File size: 2,793 Bytes
07037b8
51782e8
086f34e
90c6fe9
07037b8
 
feba6f5
 
90c6fe9
feba6f5
 
 
 
 
07037b8
 
4d09653
 
 
619c894
4d09653
 
 
07037b8
4d09653
07037b8
 
 
 
 
 
 
 
 
5be2eda
07037b8
 
 
 
 
 
 
 
 
 
 
5be2eda
07037b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
015e894
07037b8
1a3195c
c7a20f3
07037b8
c7a20f3
07037b8
 
 
1a3195c
 
 
9abce9d
1a3195c
 
 
 
 
07037b8
 
1a3195c
 
 
 
 
 
 
 
 
 
015e894
1a3195c
015e894
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# Read the data
import pandas as pd
df = pd.read_csv('./Automobile_data.csv')
#df = df.drop(columns = ['normalized-losses','symboling'], axis = 1)

context_data = []
for i in range(len(df)):  # Loop over rows
    context = ""
    for j in range(26):  # Loop over the first 8 columns
        context += df.columns[j]  # Add column name
        context += ": "
        context += str(df.iloc[i][j])  # Convert value to string
        context += " "
    context_data.append(context)


import os

# Get the secret key from the environment
groq_key = os.environ.get('groq_API_Keys')

## LLM used for RAG
from langchain_groq import ChatGroq

llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key)

## Embedding model!
from langchain_huggingface import HuggingFaceEmbeddings
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")

# create vector store!
from langchain_chroma import Chroma

vectorstore = Chroma(
    collection_name="car_dataset_store",
    embedding_function=embed_model,
    persist_directory="./",
)

# add data to vector nstore
vectorstore.add_texts(context_data)

retriever = vectorstore.as_retriever()

from langchain_core.prompts import PromptTemplate

template = ("""You are a car expert.
    Use the provided context to answer the question.
    If you don't know the answer, say so. Explain your answer in detail.
    Do not discuss the context in your response; just provide the answer directly.

    Context: {context}

    Question: {question}

    Answer:""")

rag_prompt = PromptTemplate.from_template(template)

from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

rag_chain = (
    {"context": retriever, "question": RunnablePassthrough()}
    | rag_prompt
    | llm
    | StrOutputParser()
)

import gradio as gr

# Function to process streaming responses
def rag_memory_stream(message, history):
    partial_text = ""
    for new_text in rag_chain.stream(message):
        partial_text += new_text
        yield partial_text

# Examples and app information
examples = ['I need a car', 'What is the make and fuel type of a car?']
description = "Real-time AI App with Groq API and LangChain to Answer car-related questions"
title = "Car Expert :) Try me!"

# Custom theme with black background
custom_theme = gr.themes.Base(primary_hue="blue", secondary_hue="green").set(
    body_background_fill="#000000",  # Black background
    body_text_color="#FFFFFF",      # White text for contrast
)

# Gradio interface
demo = gr.ChatInterface(
    fn=rag_memory_stream,
    type="messages",
    title=title,
    description=description,
    fill_height=True,
    examples=examples,
    theme=custom_theme,
)

# Launch the app
if __name__ == "__main__":
    demo.launch()