import subprocess from threading import Thread import torch import spaces import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer #subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" CHAT_TEMPLATE = "ŮŽAuto" MODEL_NAME = MODEL_ID.split("/")[-1] CONTEXT_LENGTH = 16000 latex_delimiters_set = [{ "left": "\\(", "right": "\\)", "display": False }, { "left": "\\begin{equation}", "right": "\\end{equation}", "display": True }, { "left": "\\begin{align}", "right": "\\end{align}", "display": True }, { "left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True }, { "left": "\\begin{gather}", "right": "\\end{gather}", "display": True }, { "left": "\\begin{CD}", "right": "\\end{CD}", "display": True }, { "left": "\\[", "right": "\\]", "display": True }] def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p): # Format history with a given chat template stop_tokens = ["<|endoftext|>", "<|im_end|>","|im_end|"] instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n' for user, assistant in history: instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n' instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n' print(instruction) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=False) enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True) input_ids, attention_mask = enc.input_ids, enc.attention_mask if input_ids.shape[1] > CONTEXT_LENGTH: input_ids = input_ids[:, -CONTEXT_LENGTH:] attention_mask = attention_mask[:, -CONTEXT_LENGTH:] generate_kwargs = dict( input_ids=input_ids.to(device), attention_mask=attention_mask.to(device), streamer=streamer, do_sample=True, temperature=temperature, max_new_tokens=max_new_tokens, top_k=top_k, repetition_penalty=repetition_penalty, top_p=top_p ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for new_token in streamer: outputs.append(new_token) if new_token in stop_tokens: break yield "".join(outputs) tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained( MODEL_ID) # Create Gradio interface gr.ChatInterface( predict, additional_inputs_accordion=gr.Accordion(label="Parameters", open=False), additional_inputs=[ gr.Textbox("You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt"), gr.Slider(0, 1, 0.6, label="Temperature"), gr.Slider(0, 32000, 10000, label="Max new tokens"), gr.Slider(1, 80, 40, label="Top K sampling"), gr.Slider(0, 2, 1.1, label="Repetition penalty"), gr.Slider(0, 1, 0.95, label="Top P sampling"), ], ).queue().launch()