import gradio as gr import plotly.graph_objects as go import numpy as np from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets def create_heatmap(selected_models, selected_dataset): if not selected_models or not selected_dataset: return gr.Plot(visible=False) # Generate random similarity matrix size = len(selected_models) similarities = np.random.rand(size, size) similarities = (similarities + similarities.T) / 2 # Make symmetric # Create plot fig = go.Figure(data=go.Heatmap( z=similarities, x=selected_models, y=selected_models, colorscale='Viridis' )) fig.update_layout( title=f"Similarity Matrix for {selected_dataset}", width=800, height=800 ) # Return both the figure and visibility update return gr.Plot.update(value=fig, visible=True) def validate_inputs(selected_models, selected_dataset): if not selected_models: raise gr.Error("Please select at least one model!") if not selected_dataset: raise gr.Error("Please select a dataset!") with gr.Blocks(title="LLM Similarity Analyzer") as demo: gr.Markdown("## Model Similarity Comparison Tool") with gr.Row(): dataset_dropdown = gr.Dropdown( choices=get_leaderboard_datasets(), label="Select Dataset", filterable=True, interactive=True, info="Leaderboard benchmark datasets" ) model_dropdown = gr.Dropdown( choices=get_leaderboard_models_cached(), label="Select Models", multiselect=True, filterable=True, allow_custom_value=False, info="Search and select multiple models" ) generate_btn = gr.Button("Generate Heatmap", variant="primary") heatmap = gr.Plot(label="Similarity Heatmap", visible=False) # Event handling generate_btn.click( fn=validate_inputs, inputs=[model_dropdown, dataset_dropdown], queue=False ).then( fn=create_heatmap, inputs=[model_dropdown, dataset_dropdown], outputs=heatmap ) # Clear button should reset to empty lists clear_btn = gr.Button("Clear Selection") clear_btn.click( lambda: [[], [], gr.Plot.update(visible=False)], outputs=[model_dropdown, dataset_dropdown, heatmap] ) if __name__ == "__main__": demo.launch()