from huggingface_hub import HfApi from functools import lru_cache def get_leaderboard_models(): api = HfApi() # List all datasets in the open-llm-leaderboard organization datasets = api.list_datasets(author="open-llm-leaderboard") models = [] #for dataset in datasets: # if dataset.id.endswith("-details"): # # Format: "open-llm-leaderboard/__-details" # model_part = dataset.id.split("/")[-1].replace("-details", "") # provider, model = model_part.split("__", 1) # models.append(f"{provider}/{model}") # Example models models = [ "meta_llama/Llama-3.2-1B-Instruct", "meta_llama/Llama-3.2-3B-Instruct", "meta_llama/Llama-3.1-8B-Instruct", "meta_llama/Llama-3.1-70B-Instruct", "meta_llama/Llama-3.3-70B-Instruct", ] return sorted(models) @lru_cache(maxsize=1) def get_leaderboard_models_cached(): return get_leaderboard_models() def get_leaderboard_datasets(): return [ "ai2_arc", "hellaswag", "mmlu", "truthful_qa", "winogrande", "gsm8k" ]