import gradio as gr import plotly.graph_objects as go import numpy as np from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets def create_heatmap(selected_models, selected_dataset): if not selected_models or not selected_dataset: return None, False # Hide plot # Generate random similarity matrix size = len(selected_models) similarities = np.random.rand(size, size) similarities = (similarities + similarities.T) / 2 # Make symmetric # Create plot with proper axis labels fig = go.Figure(data=go.Heatmap( z=similarities, x=selected_models, y=selected_models, colorscale='Viridis', hoverongaps=False )) # Improve axis readability fig.update_layout( title=f"Similarity Matrix for {selected_dataset}", xaxis_title="Models", yaxis_title="Models", xaxis=dict(tickangle=45, automargin=True), yaxis=dict(automargin=True), width=800 + 20*len(selected_models), height=800 + 20*len(selected_models), margin=dict(b=100, l=100) # Add bottom/left margin for labels ) return fig, True def validate_inputs(selected_models, selected_dataset): if not selected_models: raise gr.Error("Please select at least one model!") if not selected_dataset: raise gr.Error("Please select a dataset!") with gr.Blocks(title="LLM Similarity Analyzer") as demo: gr.Markdown("## Model Similarity Comparison Tool") with gr.Row(): dataset_dropdown = gr.Dropdown( choices=get_leaderboard_datasets(), label="Select Dataset", filterable=True, interactive=True, info="Leaderboard benchmark datasets" ) model_dropdown = gr.Dropdown( choices=get_leaderboard_models_cached(), label="Select Models", multiselect=True, filterable=True, allow_custom_value=False, info="Search and select multiple models" ) generate_btn = gr.Button("Generate Heatmap", variant="primary") heatmap = gr.Plot(label="Similarity Heatmap", visible=False) # Event handling generate_btn.click( fn=validate_inputs, inputs=[model_dropdown, dataset_dropdown], queue=False ).then( fn=create_heatmap, inputs=[model_dropdown, dataset_dropdown], outputs=[heatmap, heatmap.visible] ) # Clear button clear_btn = gr.Button("Clear Selection") clear_btn.click( lambda: [None, None, None], outputs=[model_dropdown, dataset_dropdown, heatmap] ) if __name__ == "__main__": demo.launch()