lm-similarity / src /similarity.py
Joschka Strueber
[Fix] error in deleting not-matching gt values
75132dc
import numpy as np
from lmsim.metrics import Metrics, CAPA, EC
from src.dataloading import load_run_data_cached
from src.utils import softmax, one_hot
def load_data_and_compute_similarities(models: list[str], dataset: str, metric_name: str) -> np.array:
# Load data
probs = []
gts = []
for model in models:
model_probs, model_gt = load_run_data_cached(model, dataset)
probs.append(model_probs)
gts.append(model_gt)
# Compute pairwise similarities
similarities = compute_pairwise_similarities(metric_name, probs, gts)
return similarities
def compute_similarity(metric: Metrics, outputs_a: list[np.array], outputs_b: list[np.array], gt: list[int],) -> float:
# Check that the models have the same number of responses
assert len(outputs_a) == len(outputs_b) == len(gt), f"Models must have the same number of responses: {len(outputs_a)} != {len(outputs_b)} != {len(gt)}"
# Compute similarity values
similarity = metric.compute_k(outputs_a, outputs_b, gt)
return similarity
def compute_pairwise_similarities(metric_name: str, probs: list[list[np.array]], gts: list[list[int]]) -> np.array:
# Select chosen metric
if metric_name == "CAPA":
metric = CAPA()
elif metric_name == "CAPA (det.)":
metric = CAPA(prob=False)
# Convert logits to one-hot
probs = [[one_hot(p) for p in model_probs] for model_probs in probs]
elif metric_name == "Error Consistency":
probs = [[one_hot(p) for p in model_probs] for model_probs in probs]
metric = EC()
else:
raise ValueError(f"Invalid metric: {metric_name}")
similarities = np.zeros((len(probs), len(probs)))
for i in range(len(probs)):
for j in range(i, len(probs)):
outputs_a = probs[i]
outputs_b = probs[j]
gt_a = gts[i].copy()
gt_b = gts[j].copy()
# Format softmax outputs
if metric_name == "CAPA":
outputs_a = [softmax(logits) for logits in outputs_a]
outputs_b = [softmax(logits) for logits in outputs_b]
# Remove indices where the ground truth differs
# (This code assumes gt_a and gt_b are lists of integers.)
indices_to_remove = [idx for idx, (a, b) in enumerate(zip(gt_a, gt_b)) if a != b]
for idx in sorted(indices_to_remove, reverse=True):
del outputs_a[idx]
del outputs_b[idx]
del gt_a[idx]
del gt_b[idx]
try:
similarities[i, j] = compute_similarity(metric, outputs_a, outputs_b, gt_a)
except Exception as e:
print(f"Failed to compute similarity between models {i} and {j}: {e}")
similarities[i, j] = np.nan
similarities[j, i] = similarities[i, j]
return similarities