lm-similarity / app.py
Joschka Strueber
[Add] hg login
fc18b54
raw
history blame
4.16 kB
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from io import BytesIO
from PIL import Image
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets
from huggingface_hub import login
# Set matplotlib backend for non-GUI environments
plt.switch_backend('Agg')
# Login to Hugging Face Hub
login(token="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")
def create_heatmap(selected_models, selected_dataset, selected_metric):
if not selected_models or not selected_dataset:
return None
# Sort models and get short names
selected_models = sorted(selected_models)
selected_models_short = [model.split("/")[-1] for model in selected_models]
# Generate random similarity matrix
size = len(selected_models)
similarities = np.random.rand(size, size)
similarities = (similarities + similarities.T) / 2
similarities = np.round(similarities, 2)
# Create figure and heatmap using seaborn
plt.figure(figsize=(8, 6))
ax = sns.heatmap(
similarities,
annot=True,
fmt=".2f",
cmap="viridis",
vmin=0,
vmax=1,
xticklabels=selected_models_short,
yticklabels=selected_models_short
)
# Customize plot
plt.title(f"{selected_metric} Similarities for {selected_dataset}", fontsize=16)
plt.xlabel("Models", fontsize=14)
plt.ylabel("Models", fontsize=14)
plt.xticks(rotation=45, ha='right')
plt.yticks(rotation=0)
plt.tight_layout()
# Save to buffer
buf = BytesIO()
plt.savefig(buf, format="png", dpi=100, bbox_inches="tight")
plt.close()
# Convert to PIL Image
buf.seek(0)
img = Image.open(buf).convert("RGB")
return img
def validate_inputs(selected_models, selected_dataset):
if not selected_models:
raise gr.Error("Please select at least one model!")
if not selected_dataset:
raise gr.Error("Please select a dataset!")
def update_datasets_based_on_models(selected_models, current_dataset):
# Get available datasets for selected models
available_datasets = get_leaderboard_datasets(selected_models) if selected_models else []
# Check if current dataset is still valid
valid_dataset = current_dataset if current_dataset in available_datasets else None
return gr.Dropdown.update(
choices=available_datasets,
value=valid_dataset
)
with gr.Blocks(title="LLM Similarity Analyzer") as demo:
gr.Markdown("## Model Similarity Comparison Tool")
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=get_leaderboard_datasets(None),
label="Select Dataset",
filterable=True,
interactive=True,
allow_custom_value=False,
info="Open LLM Leaderboard v2 benchmark datasets"
)
metric_dropdown = gr.Dropdown(
choices=["Kappa_p (prob.)", "Kappa_p (det.)", "Error Consistency"],
label="Select Metric",
info="Select a similarity metric to compute"
)
model_dropdown = gr.Dropdown(
choices=get_leaderboard_models_cached(),
label="Select Models",
multiselect=True,
filterable=True,
allow_custom_value=False,
info="Search and select multiple models"
)
model_dropdown.change(
fn=update_datasets_based_on_models,
inputs=[model_dropdown, dataset_dropdown],
outputs=dataset_dropdown
)
generate_btn = gr.Button("Generate Heatmap", variant="primary")
heatmap = gr.Image(label="Similarity Heatmap", visible=True)
generate_btn.click(
fn=validate_inputs,
inputs=[model_dropdown, dataset_dropdown],
queue=False
).then(
fn=create_heatmap,
inputs=[model_dropdown, dataset_dropdown, metric_dropdown],
outputs=heatmap
)
clear_btn = gr.Button("Clear Selection")
clear_btn.click(
lambda: [[], None, None],
outputs=[model_dropdown, dataset_dropdown, heatmap]
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)