Spaces:
Running
Running
import gradio as gr | |
import plotly.graph_objects as go | |
import numpy as np | |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets | |
def create_heatmap(selected_models, selected_dataset): | |
print(f"Creating heatmap with models: {selected_models} and dataset: {selected_dataset}") | |
if not selected_models or not selected_dataset: | |
return gr.Plot(visible=False) | |
# Generate random similarity matrix | |
size = len(selected_models) | |
similarities = np.random.rand(size, size) | |
similarities = (similarities + similarities.T) / 2 # Make symmetric | |
# Create plot | |
fig = go.Figure(data=go.Heatmap( | |
z=similarities, | |
x=selected_models, | |
y=selected_models, | |
colorscale='Viridis' | |
)) | |
fig.update_layout( | |
title=f"Similarity Matrix for {selected_dataset}", | |
width=800, | |
height=800 | |
) | |
# Return both the figure and visibility update | |
return gr.Plot.update(value=fig, visible=True) | |
def validate_inputs(selected_models, selected_dataset): | |
print(f"Validating inputs: models={selected_models}, dataset={selected_dataset}") | |
if not selected_models: | |
raise gr.Error("Please select at least one model!") | |
if not selected_dataset: | |
raise gr.Error("Please select a dataset!") | |
with gr.Blocks(title="LLM Similarity Analyzer") as demo: | |
gr.Markdown("## Model Similarity Comparison Tool") | |
with gr.Row(): | |
model_selector = gr.Dropdown(label="Select Models", choices=get_leaderboard_models_cached(), multiselect=True) | |
dataset_selector = gr.Dropdown(label="Select Dataset", choices=get_leaderboard_datasets()) | |
heatmap_output = gr.Plot(visible=False) | |
def on_submit(selected_models, selected_dataset): | |
try: | |
validate_inputs(selected_models, selected_dataset) | |
return create_heatmap(selected_models, selected_dataset) | |
except gr.Error as e: | |
return gr.Markdown(str(e)) | |
submit_button = gr.Button("Generate Heatmap") | |
submit_button.click(on_submit, inputs=[model_selector, dataset_selector], outputs=heatmap_output) | |
demo.launch() |