Spaces:
Running
Running
from src.dataloading import load_run_data | |
from lmsim.metrics import Kappa_p | |
import random | |
def compute_similarity(selected_model_a, selected_model_b, selected_dataset): | |
""" | |
probs_a, gt_a = load_run_data(selected_model_a, selected_dataset) | |
probs_b, gt_b = load_run_data(selected_model_b, selected_dataset) | |
assert len(probs_a) == len(probs_b), f"Models must have the same number of responses: {len(probs_a)} != {len(probs_b)}" | |
# Only keep responses where the ground truth is the same | |
output_a = [] | |
output_b = [] | |
gt = [] | |
for i in range(len(probs_a)): | |
if gt_a == gt_b: | |
output_a.append(probs_a[i]) | |
output_b.append(probs_b[i]) | |
gt.append(gt_a[i]) | |
# Placeholder similarity value | |
kappa_p = Kappa_p() | |
similarity = kappa_p.compute_k(output_a, output_b, gt) | |
""" | |
similarity = random.random() | |
return similarity |