Spaces:
Running
Running
import gradio as gr | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from io import BytesIO | |
from PIL import Image | |
from src.dataloading import get_leaderboard_models_cached, get_leaderboard_datasets | |
from src.similarity import compute_similarity | |
# Set the backend to 'Agg' for non-GUI environments (optional) | |
import matplotlib | |
matplotlib.use('Agg') | |
def generate_plot(): | |
# Generate data | |
x = np.linspace(0, 10, 100) | |
y = np.sin(x) | |
# Create figure | |
fig, ax = plt.subplots() | |
ax.plot(x, y) | |
ax.set_title("Sine Wave") | |
# Save figure to a BytesIO buffer | |
buf = BytesIO() | |
fig.savefig(buf, format="png", bbox_inches="tight", facecolor="white", dpi=100) | |
plt.close(fig) # Close the figure to free memory | |
# Convert buffer to PIL Image | |
buf.seek(0) | |
img = Image.open(buf).convert("RGB") | |
return img | |
def validate_inputs(selected_model_a, selected_model_b, selected_dataset): | |
if not selected_model_a: | |
raise gr.Error("Please select Model A!") | |
if not selected_model_b: | |
raise gr.Error("Please select Model B!") | |
if not selected_dataset: | |
raise gr.Error("Please select a dataset!") | |
def display_similarity(model_a, model_b, dataset): | |
# Assuming compute_similarity returns a float or a string | |
similarity_score = compute_similarity(model_a, model_b, dataset) | |
return f"The similarity between {model_a} and {model_b} on {dataset} is: {similarity_score}" | |
with gr.Blocks(title="LLM Similarity Analyzer") as demo: | |
gr.Markdown("## Model Similarity Comparison Tool") | |
dataset_dropdown = gr.Dropdown( | |
choices=get_leaderboard_datasets(), | |
label="Select Dataset", | |
filterable=True, | |
interactive=True, | |
info="Leaderboard benchmark datasets" | |
) | |
model_a_dropdown = gr.Dropdown( | |
choices=get_leaderboard_models_cached(), | |
label="Select Model A", | |
filterable=True, | |
allow_custom_value=False, | |
info="Search and select models" | |
) | |
model_b_dropdown = gr.Dropdown( | |
choices=get_leaderboard_models_cached(), | |
label="Select Model B", | |
filterable=True, | |
allow_custom_value=False, | |
info="Search and select models" | |
) | |
generate_btn = gr.Button("Compute Similarity", variant="primary") | |
# Textbox to display the similarity result | |
similarity_output = gr.Textbox( | |
label="Similarity Result", | |
interactive=False | |
) | |
generate_btn.click( | |
fn=validate_inputs, | |
inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown], | |
queue=False | |
).then( | |
fn=display_similarity, | |
inputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown], | |
outputs=similarity_output | |
) | |
clear_btn = gr.Button("Clear Selection") | |
clear_btn.click( | |
lambda: [None, None, None, ""], | |
outputs=[model_a_dropdown, model_b_dropdown, dataset_dropdown, similarity_output] | |
) | |
gr.Markdown("## Matplotlib Plot in Gradio") | |
plot_button = gr.Button("Generate Plot") | |
plot_output = gr.Image(label="Sine Wave Plot") | |
plot_button.click(fn=generate_plot, outputs=plot_output) | |
if __name__ == "__main__": | |
demo.launch() | |