bertugmirasyedi commited on
Commit
78a3c18
·
1 Parent(s): 936ef88

Removed onnxruntime models to save space

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -28,14 +28,14 @@ key = os.environ.get("GOOGLE_BOOKS_API_KEY")
28
  # Define summarization models
29
  summary_tokenizer_normal = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
30
  summary_model_normal = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
31
- summary_tokenizer_onnx = AutoTokenizer.from_pretrained("optimum/t5-small")
32
- summary_model_onnx = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
33
 
34
  # Define classification models
35
- classification_tokenizer_normal = AutoTokenizer.from_pretrained(
36
  "sileod/deberta-v3-base-tasksource-nli"
37
  )
38
- classification_model_normal = AutoModelForSequenceClassification.from_pretrained(
39
  "sileod/deberta-v3-base-tasksource-nli"
40
  )
41
 
@@ -502,9 +502,6 @@ async def summarize(descriptions: list, runtime="normal"):
502
  tokenizer = summary_tokenizer_normal
503
  normal_model = summary_model_normal
504
  model = BetterTransformer.transform(normal_model)
505
- elif runtime == "onnxruntime":
506
- tokenizer = summary_tokenizer_onnx
507
- model = summary_model_onnx
508
 
509
  # Create the summarizer pipeline
510
  summarizer_pipe = pipeline("summarization", model=model, tokenizer=tokenizer)
 
28
  # Define summarization models
29
  summary_tokenizer_normal = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
30
  summary_model_normal = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
31
+ #summary_tokenizer_onnx = AutoTokenizer.from_pretrained("optimum/t5-small")
32
+ #summary_model_onnx = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
33
 
34
  # Define classification models
35
+ #classification_tokenizer_normal = AutoTokenizer.from_pretrained(
36
  "sileod/deberta-v3-base-tasksource-nli"
37
  )
38
+ #classification_model_normal = AutoModelForSequenceClassification.from_pretrained(
39
  "sileod/deberta-v3-base-tasksource-nli"
40
  )
41
 
 
502
  tokenizer = summary_tokenizer_normal
503
  normal_model = summary_model_normal
504
  model = BetterTransformer.transform(normal_model)
 
 
 
505
 
506
  # Create the summarizer pipeline
507
  summarizer_pipe = pipeline("summarization", model=model, tokenizer=tokenizer)