aristotle-api / app.py
bertugmirasyedi's picture
Fixed the error in the definition of the audience classifier model
936ef88
raw
history blame
17.9 kB
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import os
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
AutoModelForSequenceClassification,
)
from optimum.onnxruntime import ORTModelForSeq2SeqLM, ORTModelForSequenceClassification
from sentence_transformers import SentenceTransformer
import torch
# Define the FastAPI app
app = FastAPI(docs_url="/")
# Add the CORS middleware to the app
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Define the Google Books API key
key = os.environ.get("GOOGLE_BOOKS_API_KEY")
# Define summarization models
summary_tokenizer_normal = AutoTokenizer.from_pretrained("lidiya/bart-base-samsum")
summary_model_normal = AutoModelForSeq2SeqLM.from_pretrained("lidiya/bart-base-samsum")
summary_tokenizer_onnx = AutoTokenizer.from_pretrained("optimum/t5-small")
summary_model_onnx = ORTModelForSeq2SeqLM.from_pretrained("optimum/t5-small")
# Define classification models
classification_tokenizer_normal = AutoTokenizer.from_pretrained(
"sileod/deberta-v3-base-tasksource-nli"
)
classification_model_normal = AutoModelForSequenceClassification.from_pretrained(
"sileod/deberta-v3-base-tasksource-nli"
)
audience_classification_tokenizer = AutoTokenizer.from_pretrained(
"bertugmirasyedi/deberta-v3-base-book-classification"
)
audience_classification_model = AutoModelForSequenceClassification.from_pretrained(
"bertugmirasyedi/deberta-v3-base-book-classification"
)
level_classification_tokenizer = AutoTokenizer.from_pretrained(
"bertugmirasyedi/deberta-v3-base-level-classification"
)
level_classification_model = AutoModelForSequenceClassification.from_pretrained(
"bertugmirasyedi/deberta-v3-base-level-classification"
)
# Define similarity model
similarity_model = SentenceTransformer("all-MiniLM-L6-v2")
@app.get("/search")
async def search(
query: str,
add_chatgpt_results: bool = False,
n_results: int = 10,
):
"""
Get the results from the Google Books API, OpenAlex, and optionally OpenAI.
"""
import time
import requests
start_time = time.time()
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
def gbooks_search(query, n_results=30):
"""
Access the Google Books API and return the results.
"""
# Set the API endpoint and query parameters
url = "https://www.googleapis.com/books/v1/volumes"
params = {
"q": str(query),
"printType": "books",
"maxResults": n_results,
"key": key,
}
# Send a GET request to the API with the specified parameters
response = requests.get(url, params=params)
# Parse the response JSON and append the results
data = response.json()
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
for item in data["items"]:
volume_info = item["volumeInfo"]
try:
titles.append(f"{volume_info['title']}: {volume_info['subtitle']}")
except KeyError:
titles.append(volume_info["title"])
try:
descriptions.append(volume_info["description"])
except KeyError:
descriptions.append("Null")
try:
publishers.append(volume_info["publisher"])
except KeyError:
publishers.append("Null")
try:
authors.append(volume_info["authors"][0])
except KeyError:
authors.append("Null")
try:
images.append(volume_info["imageLinks"]["thumbnail"])
except KeyError:
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
return titles, authors, publishers, descriptions, images
# Run the gbooks_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = gbooks_search(query, n_results=n_results)
# Append the results to the lists
[titles.append(title) for title in titles_placeholder]
[authors.append(author) for author in authors_placeholder]
[publishers.append(publisher) for publisher in publishers_placeholder]
[descriptions.append(description) for description in descriptions_placeholder]
[images.append(image) for image in images_placeholder]
# Get the time since the start
first_checkpoint = time.time()
first_checkpoint_time = int(first_checkpoint - start_time)
def openalex_search(query, n_results=10):
"""
Run a search on OpenAlex and return the results.
"""
import pyalex
from pyalex import Works
# Add email to the config
pyalex.config.email = "[email protected]"
# Define a pager object with the same query
pager = Works().search(str(query)).paginate(per_page=n_results, n_max=n_results)
# Generate a list of the results
openalex_results = list(pager)
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
# Get the titles, descriptions, and publishers and append them to the lists
try:
for result in openalex_results[0]:
try:
titles.append(result["title"])
except KeyError:
titles.append("Null")
try:
descriptions.append(result["abstract"])
except KeyError:
descriptions.append("Null")
try:
publishers.append(result["host_venue"]["publisher"])
except KeyError:
publishers.append("Null")
try:
authors.append(result["authorships"][0]["author"]["display_name"])
except KeyError:
authors.append("Null")
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
except IndexError:
titles.append("Null")
descriptions.append("Null")
publishers.append("Null")
authors.append("Null")
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
return titles, authors, publishers, descriptions, images
# Run the openalex_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = openalex_search(query, n_results=n_results)
# Append the results to the lists
[titles.append(title) for title in titles_placeholder]
[authors.append(author) for author in authors_placeholder]
[publishers.append(publisher) for publisher in publishers_placeholder]
[descriptions.append(description) for description in descriptions_placeholder]
[images.append(image) for image in images_placeholder]
# Calculate the elapsed time between the first and second checkpoints
second_checkpoint = time.time()
second_checkpoint_time = int(second_checkpoint - first_checkpoint)
def openai_search(query, n_results=10):
"""
Create a query to the OpenAI ChatGPT API and return the results.
"""
import openai
# Initialize the lists to store the results
titles = []
authors = []
publishers = []
descriptions = []
images = []
# Set the OpenAI API key
openai.api_key = os.environ.get("OPENAI_API_KEY")
# Create ChatGPT query
chatgpt_response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{
"role": "system",
"content": "You are a librarian. You are helping a patron find a book.",
},
{
"role": "user",
"content": f"Recommend me {n_results} books about {query}. Your response should be like: 'title: <title>, author: <author>, publisher: <publisher>, summary: <summary>'",
},
],
)
# Split the response into a list of results
chatgpt_results = chatgpt_response["choices"][0]["message"]["content"].split(
"\n"
)[2::2]
# Define a function to parse the results
def parse_result(
result, ordered_keys=["Title", "Author", "Publisher", "Summary"]
):
# Create a dict to store the key-value pairs
parsed_result = {}
for key in ordered_keys:
# Split the result string by the key and append the value to the list
if key != ordered_keys[-1]:
parsed_result[key] = result.split(f"{key}: ")[1].split(",")[0]
else:
parsed_result[key] = result.split(f"{key}: ")[1]
return parsed_result
ordered_keys = ["Title", "Author", "Publisher", "Summary"]
for result in chatgpt_results:
try:
# Parse the result
parsed_result = parse_result(result, ordered_keys=ordered_keys)
# Append the parsed result to the lists
titles.append(parsed_result["Title"])
authors.append(parsed_result["Author"])
publishers.append(parsed_result["Publisher"])
descriptions.append(parsed_result["Summary"])
images.append(
"https://bookstoreromanceday.org/wp-content/uploads/2020/08/book-cover-placeholder.png"
)
# In case the OpenAI API hits the limit
except IndexError:
break
return titles, authors, publishers, descriptions, images
if add_chatgpt_results:
# Run the openai_search function
(
titles_placeholder,
authors_placeholder,
publishers_placeholder,
descriptions_placeholder,
images_placeholder,
) = openai_search(query)
# Append the results to the lists
[titles.append(title) for title in titles_placeholder]
[authors.append(author) for author in authors_placeholder]
[publishers.append(publisher) for publisher in publishers_placeholder]
[descriptions.append(description) for description in descriptions_placeholder]
[images.append(image) for image in images_placeholder]
# Calculate the elapsed time between the second and third checkpoints
third_checkpoint = time.time()
third_checkpoint_time = int(third_checkpoint - second_checkpoint)
results = [
{
"id": i,
"title": title,
"author": author,
"publisher": publisher,
"description": description,
"image_link": image,
}
for (i, [title, author, publisher, description, image]) in enumerate(
zip(titles, authors, publishers, descriptions, images)
)
]
return results
@app.post("/classify")
async def classify(data: list, runtime: str = "normal"):
"""
Create classifier pipeline and return the results.
"""
titles = [book["title"] for book in data]
descriptions = [book["description"] for book in data]
publishers = [book["publisher"] for book in data]
# Combine title, description, and publisher into a single string
combined_data = [
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
for title, description, publisher in zip(titles, descriptions, publishers)
]
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
pipeline,
)
from optimum.onnxruntime import ORTModelForSequenceClassification
if runtime == "normal":
# Define the zero-shot classifier
tokenizer = classification_tokenizer_normal
model = classification_model_normal
classifier_pipe = pipeline(
"zero-shot-classification",
model=model,
tokenizer=tokenizer,
hypothesis_template="This book is {}.",
batch_size=1,
device=-1,
multi_label=False,
)
# Define the candidate labels
level = [
"Introductory",
"Advanced",
]
audience = ["Academic", "Not Academic", "Manual"]
classes = [
{
"audience": classifier_pipe(doc, audience)["labels"][0],
"audience_confidence": classifier_pipe(doc, audience)["scores"][0],
"level": classifier_pipe(doc, level)["labels"][0],
"level_confidence": classifier_pipe(doc, level)["scores"][0],
}
for doc in combined_data
]
elif runtime == "local":
### Define the classifier for audience prediction ###
audience_classifier = pipeline(
"text-classification",
model=audience_classification_model,
tokenizer=audience_classification_tokenizer,
device=-1,
)
### Define the classifier for level prediction ###
level_classifier = pipeline(
"text-classification",
model=level_classification_model,
tokenizer=level_classification_tokenizer,
device=-1,
)
classes = [
{
"audience": audience_classifier(doc, padding=True, truncation=True)[0][
"label"
],
"audience_confidence": audience_classifier(
doc, padding=True, truncation=True
)[0]["score"],
"level": level_classifier(doc, padding=True, truncation=True)[0][
"label"
],
"level_confidence": level_classifier(
doc, padding=True, truncation=True
)[0]["score"],
}
for doc in combined_data
]
return classes
@app.post("/find_similar")
async def find_similar(data: list, top_k: int = 5):
"""
Calculate the similarity between the selected book and the corpus. Return the top_k results.
"""
from sentence_transformers import SentenceTransformer
from sentence_transformers import util
titles = [book["title"] for book in data]
descriptions = [book["description"] for book in data]
publishers = [book["publisher"] for book in data]
# Combine title, description, and publisher into a single string
combined_data = [
f"The book's title is {title}. It is published by {publisher}. This book is about {description}"
for title, description, publisher in zip(titles, descriptions, publishers)
]
sentence_transformer = similarity_model
book_embeddings = sentence_transformer.encode(combined_data, convert_to_tensor=True)
# Make sure that the top_k value is not greater than the number of books
top_k = len(combined_data) if top_k > len(combined_data) else top_k
similar_books = []
for i in range(len(combined_data)):
# Get the embedding for the ith book
current_embedding = book_embeddings[i]
# Calculate the similarity between the ith book and the rest of the books
similarity_sorted = util.semantic_search(
current_embedding, book_embeddings, top_k=top_k
)
# Append the results to the list
similar_books.append(
{
"sorted_by_similarity": similarity_sorted[0][1:],
}
)
return similar_books
@app.post("/summarize")
async def summarize(descriptions: list, runtime="normal"):
"""
Summarize the descriptions and return the results.
"""
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
pipeline,
)
from optimum.onnxruntime import ORTModelForSeq2SeqLM
from optimum.bettertransformer import BetterTransformer
# Define the summarizer model and tokenizer
if runtime == "normal":
tokenizer = summary_tokenizer_normal
normal_model = summary_model_normal
model = BetterTransformer.transform(normal_model)
elif runtime == "onnxruntime":
tokenizer = summary_tokenizer_onnx
model = summary_model_onnx
# Create the summarizer pipeline
summarizer_pipe = pipeline("summarization", model=model, tokenizer=tokenizer)
# Summarize the descriptions
summaries = [
summarizer_pipe(description)
if (description != "Null" and description != None)
else [{"summary_text": "No summary text is available."}]
for description in descriptions
]
return summaries
@app.get("/get_server_status")
def get_server_status():
"""
Return the server status.
"""
from huggingface_hub import HfApi
# Define the Hugging Face API client and Aristotle API space
hf_api = HfApi()
space_id = "bertugmirasyedi/aristotle-api"
# Get the space runtime information
runtime = hf_api.get_space_runtime(space_id)
# Return the server status
status = runtime.stage
return {"status": status}