File size: 9,380 Bytes
f89848b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import random
import os

import gradio as gr
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler())

HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
DEVICE = os.environ.get("DEVICE", "cpu")  # cuda:0
if DEVICE != "cpu" and not torch.cuda.is_available():
    DEVICE = "cpu"
logger.info(f"DEVICE {DEVICE}")
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
MODEL_NAME = os.environ.get("MODEL_NAME", "bertin-project/bertin-gpt-j-6B")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 1024))
HEADER_INFO = """
# BERTIN GPT-J-6B
Spanish BERTIN GPT-J-6B Model.
""".strip()
LOGO = "https://huggingface.co/bertin-project/bertin-roberta-base-spanish/resolve/main/images/bertin.png"
HEADER = f"""
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
<style>
.ltr,
textarea {{
    font-family: Roboto !important;
    text-align: left;
    direction: ltr !important;
}}
.ltr-box {{
    border-bottom: 1px solid #ddd;
    padding-bottom: 20px;
}}
.rtl {{
    text-align: left;
    direction: ltr !important;
}}
span.result-text {{
    padding: 3px 3px;
    line-height: 32px;
}}
span.generated-text {{
    background-color: rgb(118 200 147 / 13%);
}}
</style>
<div align=center>
<img src="{LOGO}" width=150/>

# BERTIN GPT-J-6B

BERTIN proporciona una serie de modelos de lenguaje en Español entrenados en abierto.

Este modelo ha sido entrenado con [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) en TPUs proporcionadas por Google a través del programa Tensor Research Cloud, a partir del modelo [GPT-J de EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B) con el corpus [mC4-es-sampled (gaussian)](https://huggingface.co/datasets/bertin-project/mc4-es-sampled). Esta demo funciona sobre una GPU proporcionada por HuggingFace.

</div>
"""

FOOTER = """
Para más información, visite el [repositorio del modelo](https://huggingface.co/bertin-project/bertin-gpt-j-6B).
""".strip()

class Normalizer:
    def remove_repetitions(self, text):
        """Remove repetitions"""
        first_ocurrences = []
        for sentence in text.split("."):
            if sentence not in first_ocurrences:
                first_ocurrences.append(sentence)
        return '.'.join(first_ocurrences)

    def trim_last_sentence(self, text):
        """Trim last sentence if incomplete"""
        return text[:text.rfind(".") + 1]

    def clean_txt(self, text):
        return self.trim_last_sentence(self.remove_repetitions(text))


class TextGeneration:
    def __init__(self):
        self.tokenizer = None
        self.generator = None
        self.task = "text-generation"
        self.model_name_or_path = MODEL_NAME
        set_seed(42)

    def load(self):
        logger.info("Loading model...")
        self.tokenizer = AutoTokenizer.from_pretrained(
            self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
        )
        self.model = AutoModelForCausalLM.from_pretrained(
            self.model_name_or_path, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
            pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
            torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
        ).to(device=DEVICE, non_blocking=False)
        _ = self.model.eval()
        device_number = -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
        self.generator = pipeline(self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
        logger.info("Loading model done.")
        # with torch.no_grad():
        # tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
        # gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
        # generated = tokenizer.batch_decode(gen_tokens)[0]

        # return generated


    def generate(self, text, generation_kwargs):
        max_length = len(self.tokenizer(text)["input_ids"]) + generation_kwargs["max_length"]
        generation_kwargs["max_length"] = min(max_length, self.model.config.n_positions)
        # generation_kwargs["num_return_sequences"] = 1
        # generation_kwargs["return_full_text"] = False
        generated_text = None
        if text:
            for _ in range(10):
                generated_text = self.generator(
                    text,
                    **generation_kwargs,
                )[0]["generated_text"]
                if generation_kwargs["do_clean"]:
                    generated_text = cleaner.clean_txt(generated_text)
                if generated_text.strip().startswith(text):
                    generated_text = generated_text.replace(text, "", 1).strip()
                if generated_text:
                    return (
                        text + " " + generated_text,
                        [(text, None), (generated_text, "BERTIN")]
                    )
            if not generated_text:
                return (
                    "",
                    [("Tras 10 intentos BERTIN no generó nada. Pruebe cambiando las opciones", "ERROR")]
                )
            # return (text + " " + generated_text,
            #     f'<p class="ltr ltr-box">'
            #     f'<span class="result-text">{text} <span>'
            #     f'<span class="result-text generated-text">{generated_text}</span>'
            #     f'</p>'
            # )


#@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
#@st.cache(allow_output_mutation=True)
#@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
def load_text_generator():
    text_generator = TextGeneration()
    text_generator.load()
    return text_generator

cleaner = Normalizer()
generator = load_text_generator()


def complete_with_gpt(text, max_length, top_k, top_p, temperature, do_sample, do_clean):
    generation_kwargs = {
        "max_length": max_length,
        "top_k": top_k,
        "top_p": top_p,
        "temperature": temperature,
        "do_sample": do_sample,
        "do_clean": do_clean,
    }
    return generator.generate(text, generation_kwargs)

with gr.Blocks() as demo:
    gr.Markdown(HEADER)
    with gr.Row():
        with gr.Group():
            with gr.Box():
                gr.Markdown("Opciones")
            max_length = gr.Slider(
                label='Longitud máxima',
                # help="Número máximo (aproximado) de palabras a generar.",
                minimum=1,
                maximum=MAX_LENGTH,
                value=50,
                step=1
            )
            top_k = gr.Slider(
                label='Top-k',
                # help="Número de palabras con alta probabilidad a mantener para el filtrado `top-k`",
                minimum=40,
                maximum=80,
                value=50,
                step=1
            )
            top_p = gr.Slider(
                label='Top-p',
                # help="Solo las palabras más probables con probabilidades que sumen `top_p` o más se mantienen para la generación.",
                minimum=0.0,
                maximum=1.0,
                value=0.95,
                step=0.01
            )
            temperature = gr.Slider(
                label='Temperatura',
                # help="Valor utilizado para modular las probabilidades de las siguientes palabras generadas.",
                minimum=0.1,
                maximum=10.0,
                value=0.8,
                step=0.05
            )
            do_sample = gr.Checkbox(
                label='¿Muestrear?',
                value = True,
                # options=(True, False),
                # help="Si no se muestrea se usará una decodificación voraz (_greedy_).",
            )
            do_clean = gr.Checkbox(
                label='¿Limpiar texto?',
                value = True,
                # options=(True, False),
                # help="Si eliminar o no las palabras repetidas y recortar las últimas frases sin terminar.",
            )
        with gr.Column():
            textbox = gr.Textbox(label="Texto",placeholder="Escriba algo y pulse 'Generar'...", lines=8)
            hidden = gr.Textbox(visible=False, show_label=False)
            with gr.Box():
                # output = gr.Markdown()
                output = gr.HighlightedText(label="Resultado", combine_adjacent=True, color_map={"BERTIN": "green", "ERROR": "red"})
            with gr.Row():
                btn = gr.Button("Generar")
                btn.click(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output])
                edit_btn = gr.Button("Editar", variant="secondary")
                edit_btn.click(lambda x: (x, "", []), inputs=[hidden], outputs=[textbox, hidden, output])
                clean_btn = gr.Button("Limpiar", variant="secondary")
                clean_btn.click(lambda: ("", "", []), inputs=[], outputs=[textbox, hidden, output])
    gr.Markdown(FOOTER)

demo.launch()
# gr.Interface(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output]).launch()