Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
-
|
5 |
-
tokenizer = AutoTokenizer.from_pretrained("sergeantson/GPT2_Large_Law")
|
6 |
-
model = AutoModelForCausalLM.from_pretrained("sergeantson/GPT2_Large_Law")
|
7 |
|
8 |
-
|
9 |
-
inputs = tokenizer(input_text, return_tensors="pt")
|
10 |
-
output = model.generate(
|
11 |
-
**inputs,
|
12 |
-
max_length=max_length,
|
13 |
-
num_return_sequences=num_return_sequences,
|
14 |
-
temperature=temperature,
|
15 |
-
top_k=top_k,
|
16 |
-
top_p=top_p,
|
17 |
-
no_repeat_ngram_size=2 # Prevents repeating n-grams
|
18 |
-
)
|
19 |
-
generated_texts = [tokenizer.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)]
|
20 |
-
return "\n\n".join(generated_texts)
|
21 |
-
|
22 |
-
# Set up the Gradio interface
|
23 |
-
iface = gr.Interface(
|
24 |
-
fn=generate_text,
|
25 |
-
inputs=[
|
26 |
-
gr.Textbox(lines=2, placeholder="Enter a prompt here...", label="Input Text"),
|
27 |
-
gr.Slider(minimum=10, maximum=200, value=50, step=1, label="Max Length"),
|
28 |
-
gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of Return Sequences"),
|
29 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
|
30 |
-
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"),
|
31 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p")
|
32 |
-
],
|
33 |
-
outputs="text",
|
34 |
-
title="Legal Text Generator",
|
35 |
-
description="Enter a prompt to generate legal text based on the input."
|
36 |
-
)
|
37 |
-
|
38 |
-
# Launch the interface
|
39 |
-
iface.launch(share=True)
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
+
demo = gr.load("sergeantson/GPT2_Large_Law", src="models")
|
|
|
|
|
4 |
|
5 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|