berkerbatur commited on
Commit
71b6ab1
·
verified ·
1 Parent(s): e27a89d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -36
app.py CHANGED
@@ -1,39 +1,5 @@
1
  import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForCausalLM
3
 
4
- # Load the tokenizer and model
5
- tokenizer = AutoTokenizer.from_pretrained("sergeantson/GPT2_Large_Law")
6
- model = AutoModelForCausalLM.from_pretrained("sergeantson/GPT2_Large_Law")
7
 
8
- def generate_text(input_text, max_length, num_return_sequences, temperature, top_k, top_p):
9
- inputs = tokenizer(input_text, return_tensors="pt")
10
- output = model.generate(
11
- **inputs,
12
- max_length=max_length,
13
- num_return_sequences=num_return_sequences,
14
- temperature=temperature,
15
- top_k=top_k,
16
- top_p=top_p,
17
- no_repeat_ngram_size=2 # Prevents repeating n-grams
18
- )
19
- generated_texts = [tokenizer.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)]
20
- return "\n\n".join(generated_texts)
21
-
22
- # Set up the Gradio interface
23
- iface = gr.Interface(
24
- fn=generate_text,
25
- inputs=[
26
- gr.Textbox(lines=2, placeholder="Enter a prompt here...", label="Input Text"),
27
- gr.Slider(minimum=10, maximum=200, value=50, step=1, label="Max Length"),
28
- gr.Slider(minimum=1, maximum=5, value=1, step=1, label="Number of Return Sequences"),
29
- gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
30
- gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k"),
31
- gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p")
32
- ],
33
- outputs="text",
34
- title="Legal Text Generator",
35
- description="Enter a prompt to generate legal text based on the input."
36
- )
37
-
38
- # Launch the interface
39
- iface.launch(share=True)
 
1
  import gradio as gr
 
2
 
3
+ demo = gr.load("sergeantson/GPT2_Large_Law", src="models")
 
 
4
 
5
+ demo.launch()