Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,77 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
import spaces
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
|
|
|
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
torch_dtype = torch.bfloat16
|
14 |
else:
|
15 |
torch_dtype = torch.float32
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 1024
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import json
|
|
|
|
|
5 |
import torch
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
from diffusers import AutoencoderKL, SD3Transformer2DModel, StableDiffusion3Pipeline
|
9 |
+
from diffusers.loaders.single_file_utils import convert_sd3_transformer_checkpoint_to_diffusers
|
10 |
+
from huggingface_hub import hf_hub_download
|
11 |
+
from transformers import (
|
12 |
+
CLIPTextModelWithProjection,
|
13 |
+
CLIPTokenizer,
|
14 |
+
T5EncoderModel,
|
15 |
+
T5Tokenizer
|
16 |
+
)
|
17 |
+
from accelerate import (
|
18 |
+
init_empty_weights,
|
19 |
+
set_module_tensor_to_device,
|
20 |
+
infer_auto_device_map,
|
21 |
+
load_checkpoint_and_dispatch
|
22 |
+
)
|
23 |
+
from safetensors import safe_open
|
24 |
|
25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large"
|
27 |
+
finetune_repo_id = "DoctorDiffusion/Absynth-2.0"
|
28 |
+
finetune_filename = "Absynth_SD3.5L_2.0.safetensors"
|
29 |
|
30 |
if torch.cuda.is_available():
|
31 |
torch_dtype = torch.bfloat16
|
32 |
else:
|
33 |
torch_dtype = torch.float32
|
34 |
|
35 |
+
# Initialize models from base SD3.5
|
36 |
+
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
|
37 |
+
text_encoder = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder")
|
38 |
+
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(model_repo_id, subfolder="text_encoder_2")
|
39 |
+
text_encoder_3 = T5EncoderModel.from_pretrained(mdoel_repo_id, subfolder="text_encoder_3")
|
40 |
+
tokenizer = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
|
41 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_2")
|
42 |
+
tokenizer_3 = T5Tokenizer.from_pretrained(model_repo_id, subfolder="tokenizer_3")
|
43 |
+
|
44 |
+
# Initialize transformer
|
45 |
+
config_file = hf_hub_download(repo_id=model_repo_id, filename="transformer/config.json")
|
46 |
+
with open(config_file, "r") as fp:
|
47 |
+
config = json.loads(fp)
|
48 |
+
with no_init_weights():
|
49 |
+
transformer = SD3Transformer2DModel.from_config(config)
|
50 |
+
|
51 |
+
# Get transformer state dict and load
|
52 |
+
model_file = hf_hub_download(repo_id=finetune_repo_id, filename=finetune_filename)
|
53 |
+
state_dict = {}
|
54 |
+
with safe_open(model_file, framework="pt") as f:
|
55 |
+
for key in f.keys():
|
56 |
+
state_dict[key] = f.get_tensor(key)
|
57 |
+
|
58 |
+
state_dict = convert_sd3_transformer_checkpoint_to_diffusers(state_dict)
|
59 |
+
transformer.load_state_dict(state_dict)
|
60 |
+
|
61 |
+
# Create pipeline from our models
|
62 |
+
pipe = StableDiffusion3Pipeline(
|
63 |
+
vae=vae,
|
64 |
+
text_encoder=text_encoder,
|
65 |
+
text_encoder_2=text_encoder_2,
|
66 |
+
text_encoder_3=text_encoder_3,
|
67 |
+
tokenizer=tokenizer,
|
68 |
+
tokenizer_2=tokenizer_2,
|
69 |
+
tokenizer_3=tokenizer_3,
|
70 |
+
transformer=transformer
|
71 |
+
)
|
72 |
+
pipe = pipe.to(device, dtype=torch_dtype)
|
73 |
+
|
74 |
+
# The rest of the code is from the official SD3.5 space
|
75 |
|
76 |
MAX_SEED = np.iinfo(np.int32).max
|
77 |
MAX_IMAGE_SIZE = 1024
|