benjamin-paine commited on
Commit
10437bc
·
verified ·
1 Parent(s): ee53645

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -3
app.py CHANGED
@@ -6,18 +6,46 @@ import json
6
  import torch
7
  import spaces
8
 
9
- from diffusers import Lumina2Text2ImgPipeline
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
  device = "cuda" if torch.cuda.is_available() else "cpu"
12
  model_repo_id = "Alpha-VLLM/Lumina-Image-2.0"
13
 
14
-
15
  if torch.cuda.is_available():
16
  torch_dtype = torch.bfloat16
17
  else:
18
  torch_dtype = torch.float32
19
 
20
- pipe = Lumina2Text2ImgPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
  MAX_SEED = np.iinfo(np.int32).max
23
  MAX_IMAGE_SIZE = 1536
 
6
  import torch
7
  import spaces
8
 
9
+ from diffusers.pipelines import Lumina2Text2ImgPipeline
10
+ from diffusers.models.transformers.transformer_lumina2 import Lumina2Transformer2DModel
11
+
12
+ from diffusers import (
13
+ AutoencoderKL,
14
+ FlowMatchEulerDiscreteScheduler
15
+ )
16
+ from diffusers.loaders.single_file_utils import (
17
+ convert_sd3_transformer_checkpoint_to_diffusers,
18
+ )
19
+ from transformers import (
20
+ Gemma2Model,
21
+ GemmaTokenizer
22
+ )
23
 
24
  device = "cuda" if torch.cuda.is_available() else "cpu"
25
  model_repo_id = "Alpha-VLLM/Lumina-Image-2.0"
26
 
 
27
  if torch.cuda.is_available():
28
  torch_dtype = torch.bfloat16
29
  else:
30
  torch_dtype = torch.float32
31
 
32
+ ###
33
+
34
+ vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
35
+ text_encoder = Gemma2Model.from_pretrained(model_repo_id, subfolder="text_encoder")
36
+ transformer = Lumina2Transformer2DModel.from_pretrained(model_repo_id, subfolder="transformer")
37
+ tokenizer = GemmaTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
38
+ scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler")
39
+
40
+ ###
41
+ pipe = Lumina2Text2ImgPipeline(
42
+ vae=vae,
43
+ text_encoder=text_encoder,
44
+ transformer=transformer,
45
+ tokenizer=tokenizer,
46
+ scheduler=scheduler,
47
+ )
48
+ pipe.to(device, torch_dtype)
49
 
50
  MAX_SEED = np.iinfo(np.int32).max
51
  MAX_IMAGE_SIZE = 1536