Spaces:
Running
Running
File size: 10,556 Bytes
f0de4e8 0891b79 f0de4e8 0891b79 f0de4e8 0891b79 f0de4e8 0891b79 f0de4e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from matplotlib import pyplot as plt
# from shtools import shReconstructSignal
from torchvision import transforms, utils
# from torchvision.ops import SqueezeExcitation
from torch.utils.data import Dataset
import torch.nn.functional as F
import torch.nn as nn
import torch
import math
import cv2
import numpy as np
from .normalizer import PatchNormalizer, PatchedHarmonizer
from .util import rgb_to_lab, lab_to_rgb, lab_shift
# from shtools import *
# from color_converters import luv_to_rgb, rgb_to_luv
# from skimage import io, transform
'''
Input (256,512,3)
'''
def inpaint_bg(comp, mask, dim=[2, 3]):
"""
inpaint bg for ihd
Args:
comp (torch.float): [0:1]
mask (torch.float): [0:1]
"""
back = comp * (1-mask) # *255
sum = torch.sum(back, dim=dim) # (B, C)
num = torch.sum((1-mask), dim=dim) # (B, C)
mu = sum / (num)
mean = mu[:, :, None, None]
back = back + mask * mean
return back
class ConvTransposeUp(nn.Sequential):
def __init__(self, in_channels, out_channels, kernel_size=4, padding=1, stride=2, activation=None):
super().__init__(
nn.ConvTranspose2d(in_channels, out_channels,
kernel_size=kernel_size, padding=padding, stride=stride),
activation() if activation is not None else nn.Identity(),
)
class UpsampleShuffle(nn.Sequential):
def __init__(self, in_channels, out_channels, activation=True):
super().__init__(
nn.Conv2d(in_channels, out_channels * 4, kernel_size=1),
nn.GELU() if activation else nn.Identity(),
nn.PixelShuffle(2)
)
def reset_parameters(self):
init_subpixel(self[0].weight)
nn.init.zeros_(self[0].bias)
class UpsampleResize(nn.Sequential):
def __init__(self, in_channels, out_channels, out_size=None, activation=None, scale_factor=2., mode='bilinear'):
super().__init__(
nn.Upsample(scale_factor=scale_factor, mode=mode) if out_size is None else nn.Upsample(
out_size, mode=mode),
nn.ReflectionPad2d(1),
nn.Conv2d(in_channels, out_channels,
kernel_size=3, stride=1, padding=0),
activation() if activation is not None else nn.Identity(),
)
def conv_bn(in_, out_, kernel_size=3, stride=1, padding=1, activation=nn.ReLU, normalization=nn.InstanceNorm2d):
return nn.Sequential(
nn.Conv2d(in_, out_, kernel_size, stride=stride, padding=padding),
normalization(out_) if normalization is not None else nn.Identity(),
activation(),
)
def init_subpixel(weight):
co, ci, h, w = weight.shape
co2 = co // 4
# initialize sub kernel
k = torch.empty([c02, ci, h, w])
nn.init.kaiming_uniform_(k)
# repeat 4 times
k = k.repeat_interleave(4, dim=0)
weight.data.copy_(k)
class DownsampleShuffle(nn.Sequential):
def __init__(self, in_channels):
assert in_channels % 4 == 0
super().__init__(
nn.Conv2d(in_channels, in_channels // 4, kernel_size=1),
nn.ReLU(),
nn.PixelUnshuffle(2)
)
def reset_parameters(self):
init_subpixel(self[0].weight)
nn.init.zeros_(self[0].bias)
def conv_bn_elu(in_, out_, kernel_size=3, stride=1, padding=True):
# conv layer with ELU activation function
pad = int(kernel_size/2)
if padding is False:
pad = 0
return nn.Sequential(
nn.Conv2d(in_, out_, kernel_size, stride=stride, padding=pad),
nn.ELU(),
)
class Inference_Data(Dataset):
def __init__(self, img_path):
self.input_img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
self.input_img = cv2.resize(
self.input_img, (512, 256), interpolation=cv2.INTER_CUBIC)
self.to_tensor = transforms.ToTensor()
self.data_len = 1
def __getitem__(self, index):
self.tensor_img = self.to_tensor(self.input_img)
return self.tensor_img
def __len__(self):
return self.data_len
class MyAdaptiveMaxPool2d(nn.Module):
def __init__(self, sz=None):
super().__init__()
def forward(self, x):
inp_size = x.size()
return nn.functional.max_pool2d(input=x,
kernel_size=(inp_size[2], inp_size[3]))
class SEBlock(nn.Module):
def __init__(self, channel, reducation=8):
super(SEBlock, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel//reducation),
nn.ReLU(inplace=True),
nn.Linear(channel//reducation, channel),
nn.Sigmoid())
def forward(self, x, aux_inp=None):
b, c, w, h = x.size()
def scale(x):
return (x - x.min()) / (x.max() - x.min() + 1e-8)
y1 = self.avg_pool(x).view(b, c)
y = self.fc(y1).view(b, c, 1, 1)
r = x*y
if aux_inp is not None:
aux_weitghts = MyAdaptiveMaxPool2d(
aux_inp.shape[-1]//8)(aux_inp)
aux_weitghts = nn.Sigmoid()(aux_weitghts.mean(1, keepdim=True))
tmp = x*aux_weitghts
tmp_img = (tmp - tmp.min()) / (tmp.max() - tmp.min())
r += tmp
return r
class ConvTransposeUp(nn.Sequential):
def __init__(self, in_channels, out_channels, norm, kernel_size=3, stride=2, padding=1, activation=None):
super().__init__(
nn.ConvTranspose2d(in_channels, out_channels,
# output_padding=output_padding, dilation=dilation
kernel_size=kernel_size, padding=padding, stride=stride,
),
norm(out_channels) if norm is not None else nn.Identity(),
activation() if activation is not None else nn.Identity(),
)
class SkipConnect(nn.Module):
"""docstring for RegionalSkipConnect"""
def __init__(self, channel):
super(SkipConnect, self).__init__()
self.rconv = nn.Conv2d(channel*2, channel, 3, padding=1, bias=False)
def forward(self, feature):
return F.relu(self.rconv(feature))
class AttentionBlock(nn.Module):
def __init__(self, in_channels):
super(AttentionBlock, self).__init__()
self.attn = nn.Sequential(
nn.Conv2d(in_channels * 2, in_channels * 2, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
return self.attn(x)
class PatchHarmonizerBlock(nn.Module):
def __init__(self, in_channels=3, grid_count=5):
super(PatchHarmonizerBlock, self).__init__()
self.patch_harmonizer = PatchedHarmonizer(grid_count=grid_count)
self.head = conv_bn(in_channels*2, in_channels,
kernel_size=3, padding=1, normalization=None)
def forward(self, fg, bg, mask):
fg_harm, _ = self.patch_harmonizer(fg, bg, mask)
return self.head(torch.cat([fg, fg_harm], 1))
class PHNet(nn.Module):
def __init__(self, enc_sizes=[3, 16, 32, 64, 128, 256, 512], skips=True, grid_count=[10, 5, 1], init_weights=[0.5, 0.5], init_value=0.8):
super(PHNet, self).__init__()
self.skips = skips
self.feature_extractor = PatchHarmonizerBlock(
in_channels=enc_sizes[0], grid_count=grid_count[1])
self.encoder = nn.ModuleList([
conv_bn(enc_sizes[0], enc_sizes[1],
kernel_size=4, stride=2),
conv_bn(enc_sizes[1], enc_sizes[2],
kernel_size=3, stride=1),
conv_bn(enc_sizes[2], enc_sizes[3],
kernel_size=4, stride=2),
conv_bn(enc_sizes[3], enc_sizes[4],
kernel_size=3, stride=1),
conv_bn(enc_sizes[4], enc_sizes[5],
kernel_size=4, stride=2),
conv_bn(enc_sizes[5], enc_sizes[6],
kernel_size=3, stride=1),
])
dec_ins = enc_sizes[::-1]
dec_sizes = enc_sizes[::-1]
self.start_level = len(dec_sizes) - len(grid_count)
self.normalizers = nn.ModuleList([
PatchNormalizer(in_channels=dec_sizes[self.start_level+i], grid_count=count, weights=init_weights, eps=1e-7, init_value=init_value) for i, count in enumerate(grid_count)
])
self.decoder = nn.ModuleList([
ConvTransposeUp(
dec_ins[0], dec_sizes[1], norm=nn.BatchNorm2d, kernel_size=3, stride=1, activation=nn.LeakyReLU),
ConvTransposeUp(
dec_ins[1], dec_sizes[2], norm=nn.BatchNorm2d, kernel_size=4, stride=2, activation=nn.LeakyReLU),
ConvTransposeUp(
dec_ins[2], dec_sizes[3], norm=nn.BatchNorm2d, kernel_size=3, stride=1, activation=nn.LeakyReLU),
ConvTransposeUp(
dec_ins[3], dec_sizes[4], norm=None, kernel_size=4, stride=2, activation=nn.LeakyReLU),
ConvTransposeUp(
dec_ins[4], dec_sizes[5], norm=None, kernel_size=3, stride=1, activation=nn.LeakyReLU),
ConvTransposeUp(
dec_ins[5], 3, norm=None, kernel_size=4, stride=2, activation=None),
])
self.skip = nn.ModuleList([
SkipConnect(x) for x in dec_ins
])
self.SE_block = SEBlock(enc_sizes[6])
def forward(self, img, mask):
x = img
enc_outs = [x]
x_harm = self.feature_extractor(x*mask, x*(1-mask), mask)
# x = x_harm
masks = [mask]
for i, down_layer in enumerate(self.encoder):
x = down_layer(x)
scale_factor = 1. / (pow(2, 1 - i % 2))
masks.append(F.interpolate(masks[-1], scale_factor=scale_factor))
enc_outs.append(x)
x = self.SE_block(x, aux_inp=x_harm)
masks = masks[::-1]
for i, (up_layer, enc_out) in enumerate(zip(self.decoder, enc_outs[::-1])):
if i >= self.start_level:
enc_out = self.normalizers[i -
self.start_level](enc_out, enc_out, masks[i])
x = torch.cat([x, enc_out], 1)
x = self.skip[i](x)
x = up_layer(x)
harmonized = F.sigmoid(x)
return harmonized
def set_requires_grad(self, modules=["encoder", "sh_head", "resquare", "decoder"], value=False):
for module in modules:
attr = getattr(self, module, None)
if attr is not None:
attr.requires_grad_(value)
|