File size: 2,704 Bytes
5f42812
 
 
d40303a
 
5f42812
 
 
 
 
d40303a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f42812
d40303a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f42812
d40303a
 
 
 
 
 
 
 
 
5f42812
 
d40303a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f42812
 
d40303a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
from video_processor.processor import VideoAnalyzer
import logging
import torch
import spaces

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@spaces.GPU
def on_process(video):
    # Clear all components when starting new processing
    yield [
        "",  # Clear status
        "",  # Clear description
        gr.update(visible=False)  # Hide accordion
    ]
    
    if not video:
        yield [
            "Please upload a video",
            "",
            gr.update(visible=False)
        ]
        return
    
    try:
        # Initialize analyzer
        yield [
            "Initializing video analyzer...",
            "",
            gr.update(visible=False)
        ]
        
        analyzer = VideoAnalyzer()
        
        # Process video
        yield [
            "Analyzing video content...",
            "",
            gr.update(visible=True)
        ]
        
        logger.info(f"Processing video: {video}")
        result = analyzer.process_video(video)
        description = result[0]["description"]
        
        # Format output
        formatted_desc = f"### Analysis:\n{description}"
        
        yield [
            "Processing complete!",
            formatted_desc,
            gr.update(visible=True)
        ]
        
    except Exception as e:
        logger.exception("Error processing video")
        yield [
            f"Error processing video: {str(e)}",
            "",
            gr.update(visible=False)
        ]
    finally:
        # Clean up
        torch.cuda.empty_cache()

# Create Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# SmolVLM Video Analyzer")
    gr.Markdown("Upload a video to get a detailed analysis of its content.")
    
    with gr.Row():
        with gr.Column(scale=1):
            input_video = gr.Video(
                label="Upload your video",
                interactive=True
            )
            process_btn = gr.Button("Process Video", variant="primary")
            
        with gr.Column(scale=1):
            status = gr.Markdown()
            analysis_accordion = gr.Accordion(
                "Analysis Details",
                open=True,
                visible=False
            )
            with analysis_accordion:
                video_description = gr.Markdown("")

    process_btn.click(
        on_process,
        inputs=[input_video],
        outputs=[
            status,
            video_description,
            analysis_accordion
        ],
        queue=True,
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False
    )