bcci's picture
Update app.py
65e1914 verified
raw
history blame
8.84 kB
import io
import re
import wave
import struct
import numpy as np
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, Response, HTMLResponse
from kokoro import KPipeline
app = FastAPI(title="Kokoro TTS FastAPI")
# ------------------------------------------------------------------------------
# Global Pipeline Instance
# ------------------------------------------------------------------------------
# Create one pipeline instance for the entire app.
pipeline = KPipeline(lang_code="a")
# ------------------------------------------------------------------------------
# Helper Functions
# ------------------------------------------------------------------------------
def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes:
"""
Generate a WAV header for streaming.
Since we don't know the final audio size, we set the data chunk size to a large dummy value.
This header is sent only once at the start of the stream.
"""
bits_per_sample = sample_width * 8
byte_rate = sample_rate * num_channels * sample_width
block_align = num_channels * sample_width
# total file size = 36 + data_size (header is 44 bytes total)
total_size = 36 + data_size
header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE')
fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample)
data_chunk_header = struct.pack('<4sI', b'data', data_size)
return header + fmt_chunk + data_chunk_header
def custom_split_text(text: str) -> list:
"""
Custom splitting:
- Start with a chunk size of 2 words.
- For each chunk, if a period (".") is found in any word (except if it’s the very last word),
then split the chunk at that word (include words up to that word).
- Otherwise, use the current chunk size.
- For subsequent chunks, increase the chunk size by 2.
- If there are fewer than the desired number of words for a full chunk, add all remaining words.
"""
words = text.split()
chunks = []
chunk_size = 2
start = 0
while start < len(words):
candidate_end = start + chunk_size
if candidate_end > len(words):
candidate_end = len(words)
chunk_words = words[start:candidate_end]
# Look for a period in any word except the last one.
split_index = None
for i in range(len(chunk_words) - 1):
if '.' in chunk_words[i]:
split_index = i
break
if split_index is not None:
candidate_end = start + split_index + 1
chunk_words = words[start:candidate_end]
chunks.append(" ".join(chunk_words))
start = candidate_end
chunk_size += 2 # Increase the chunk size by 2 for the next iteration.
return chunks
def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
"""
Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes.
"""
# Ensure tensor is on CPU and flatten if necessary.
audio_np = audio_tensor.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
# Scale to int16 range.
audio_int16 = np.int16(audio_np * 32767)
return audio_int16.tobytes()
# ------------------------------------------------------------------------------
# Endpoints
# ------------------------------------------------------------------------------
@app.get("/tts/streaming", summary="Streaming TTS")
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0):
"""
Streaming TTS endpoint that returns a continuous WAV stream.
The endpoint first yields a WAV header (with a dummy length) then yields raw PCM data
for each text chunk as soon as it is generated.
"""
# Split the input text using the custom doubling strategy.
chunks = custom_split_text(text)
sample_rate = 24000
num_channels = 1
sample_width = 2 # 16-bit PCM
def audio_generator():
# Yield the WAV header first.
header = generate_wav_header(sample_rate, num_channels, sample_width)
yield header
# Process and yield each chunk's PCM data.
for i, chunk in enumerate(chunks):
print(f"Processing chunk {i}: {chunk}") # Debugging
try:
results = list(pipeline(chunk, voice=voice, speed=speed, split_pattern=None))
for result in results:
if result.audio is not None:
yield audio_tensor_to_pcm_bytes(result.audio)
else:
print(f"Chunk {i}: No audio generated")
except Exception as e:
print(f"Error processing chunk {i}: {e}")
return StreamingResponse(
audio_generator(),
media_type="audio/wav",
headers={"Cache-Control": "no-cache"},
)
@app.get("/tts/full", summary="Full TTS")
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0):
"""
Full TTS endpoint that synthesizes the entire text, concatenates the audio,
and returns a complete WAV file.
"""
# Use newline-based splitting via the pipeline's split_pattern.
results = list(pipeline(text, voice=voice, speed=speed, split_pattern=r"\n+"))
audio_segments = []
for result in results:
if result.audio is not None:
audio_np = result.audio.cpu().numpy()
if audio_np.ndim > 1:
audio_np = audio_np.flatten()
audio_segments.append(audio_np)
if not audio_segments:
raise HTTPException(status_code=500, detail="No audio generated.")
# Concatenate all audio segments.
full_audio = np.concatenate(audio_segments)
# Write the concatenated audio to an in-memory WAV file.
sample_rate = 24000
num_channels = 1
sample_width = 2 # 16-bit PCM -> 2 bytes per sample
wav_io = io.BytesIO()
with wave.open(wav_io, "wb") as wav_file:
wav_file.setnchannels(num_channels)
wav_file.setsampwidth(sample_width)
wav_file.setframerate(sample_rate)
full_audio_int16 = np.int16(full_audio * 32767)
wav_file.writeframes(full_audio_int16.tobytes())
wav_io.seek(0)
return Response(content=wav_io.read(), media_type="audio/wav")
@app.get("/", response_class=HTMLResponse)
def index():
"""
HTML demo page for Kokoro TTS.
This page provides a simple UI to enter text, choose a voice and speed,
and play synthesized audio from both the streaming and full endpoints.
"""
return """
<!DOCTYPE html>
<html>
<head>
<title>Kokoro TTS Demo</title>
</head>
<body>
<h1>Kokoro TTS Demo</h1>
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
<label for="voice">Voice:</label>
<input type="text" id="voice" value="af_heart"><br>
<label for="speed">Speed:</label>
<input type="number" step="0.1" id="speed" value="1.0"><br><br>
<button onclick="playStreaming()">Play Streaming TTS</button>
<button onclick="playFull()">Play Full TTS</button>
<br><br>
<audio id="audio" controls autoplay></audio>
<script>
function playStreaming() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const audio = document.getElementById('audio');
// Set the audio element's source to the streaming endpoint.
audio.src = `/tts/streaming?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
audio.play();
}
function playFull() {
const text = document.getElementById('text').value;
const voice = document.getElementById('voice').value;
const speed = document.getElementById('speed').value;
const audio = document.getElementById('audio');
// Set the audio element's source to the full TTS endpoint.
audio.src = `/tts/full?text=${encodeURIComponent(text)}&voice=${encodeURIComponent(voice)}&speed=${speed}`;
audio.play();
}
</script>
</body>
</html>
"""
# ------------------------------------------------------------------------------
# Run with: uvicorn app:app --reload
# ------------------------------------------------------------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)