import io import re import wave import struct import time import numpy as np import torch from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse, Response, HTMLResponse from fastapi.middleware import Middleware from fastapi.middleware.gzip import GZipMiddleware from kokoro import KPipeline, StreamKPipeline from kokoro.model import KModel app = FastAPI( title="Kokoro TTS FastAPI", middleware=[ Middleware(GZipMiddleware, compresslevel=9) # Add GZip compression ] ) # ------------------------------------------------------------------------------ # Global Pipeline Instance # ------------------------------------------------------------------------------ # Create one pipeline instance for the entire app. model = KModel() # Or however you initialize/load your model device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) #pipeline = KPipeline(lang_code="a",model=model) voice = "af_heart" speed = 1.0 pipeline = StreamKPipeline(lang_code="a", model=model, voice=voice, device=device, speed=speed) # ------------------------------------------------------------------------------ # Helper Functions # ------------------------------------------------------------------------------ def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int, data_size: int = 0x7FFFFFFF) -> bytes: """ Generate a WAV header for streaming. Since we don't know the final audio size, we set the data chunk size to a large dummy value. This header is sent only once at the start of the stream. """ bits_per_sample = sample_width * 8 byte_rate = sample_rate * num_channels * sample_width block_align = num_channels * sample_width # total file size = 36 + data_size (header is 44 bytes total) total_size = 36 + data_size header = struct.pack('<4sI4s', b'RIFF', total_size, b'WAVE') fmt_chunk = struct.pack('<4sIHHIIHH', b'fmt ', 16, 1, num_channels, sample_rate, byte_rate, block_align, bits_per_sample) data_chunk_header = struct.pack('<4sI', b'data', data_size) return header + fmt_chunk + data_chunk_header def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes: """ Convert a torch.FloatTensor (with values in [-1, 1]) to raw 16-bit PCM bytes. """ # Ensure tensor is on CPU and flatten if necessary. audio_np = audio_tensor.cpu().numpy() if audio_np.ndim > 1: audio_np = audio_np.flatten() # Scale to int16 range. audio_int16 = np.int16(audio_np * 32767) return audio_int16.tobytes() # ------------------------------------------------------------------------------ # Endpoints # ------------------------------------------------------------------------------ @app.get("/tts/streaming", summary="Streaming TTS") def tts_streaming(text: str): """ Streaming TTS endpoint that returns a continuous audio stream. The endpoint yields a WAV header (with a dummy length) for WAV, then yields encoded audio data for each phoneme as soon as it is generated. """ sample_rate = 24000 num_channels = 1 sample_width = 2 # 16-bit PCM def audio_generator(): # Yield the WAV header first. header = generate_wav_header(sample_rate, num_channels, sample_width) yield header # Process and yield each audio chunk. try: for result in pipeline(text): # Use StreamKPipeline if result.audio is not None: yield audio_tensor_to_pcm_bytes(result.audio) else: print("No audio generated for phoneme") except Exception as e: print(f"Error processing: {e}") yield b'' # Important so that streaming continues. media_type = "audio/wav" return StreamingResponse( audio_generator(), media_type=media_type, headers={"Cache-Control": "no-cache"}, ) #Remove full tts @app.get("/", response_class=HTMLResponse) def index(): """ HTML demo page for Kokoro TTS. This page provides a simple UI to enter text and play synthesized audio from the streaming endpoint. """ return """ Kokoro TTS Demo

Kokoro TTS Demo





""" # ------------------------------------------------------------------------------ # Run with: uvicorn app:app --reload # ------------------------------------------------------------------------------ if __name__ == "__main__": import uvicorn uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)