Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,10 +10,10 @@ from fastapi.responses import StreamingResponse, Response, HTMLResponse
|
|
10 |
from fastapi.middleware import Middleware
|
11 |
from fastapi.middleware.gzip import GZipMiddleware
|
12 |
|
13 |
-
from kokoro import KPipeline
|
14 |
|
15 |
app = FastAPI(
|
16 |
-
title="Kokoro TTS FastAPI",
|
17 |
middleware=[
|
18 |
Middleware(GZipMiddleware, compresslevel=9) # Add GZip compression
|
19 |
]
|
@@ -23,7 +23,8 @@ app = FastAPI(
|
|
23 |
# Global Pipeline Instance
|
24 |
# ------------------------------------------------------------------------------
|
25 |
# Create one pipeline instance for the entire app.
|
26 |
-
|
|
|
27 |
|
28 |
|
29 |
# ------------------------------------------------------------------------------
|
@@ -47,12 +48,12 @@ def generate_wav_header(sample_rate: int, num_channels: int, sample_width: int,
|
|
47 |
return header + fmt_chunk + data_chunk_header
|
48 |
|
49 |
|
50 |
-
def
|
51 |
"""
|
52 |
-
Convert a torch.FloatTensor (
|
53 |
"""
|
54 |
# Ensure tensor is on CPU and flatten if necessary.
|
55 |
-
audio_np =
|
56 |
if audio_np.ndim > 1:
|
57 |
audio_np = audio_np.flatten()
|
58 |
# Scale to int16 range.
|
@@ -60,9 +61,9 @@ def audio_tensor_to_pcm_bytes(audio_tensor: torch.Tensor) -> bytes:
|
|
60 |
return audio_int16.tobytes()
|
61 |
|
62 |
|
63 |
-
def
|
64 |
"""
|
65 |
-
Convert a torch.FloatTensor to Opus encoded bytes.
|
66 |
Requires the 'opuslib' package: pip install opuslib
|
67 |
"""
|
68 |
try:
|
@@ -70,7 +71,7 @@ def audio_tensor_to_opus_bytes(audio_tensor: torch.Tensor, sample_rate: int = 24
|
|
70 |
except ImportError:
|
71 |
raise ImportError("opuslib is not installed. Please install it with: pip install opuslib")
|
72 |
|
73 |
-
audio_np =
|
74 |
if audio_np.ndim > 1:
|
75 |
audio_np = audio_np.flatten()
|
76 |
# Scale to int16 range. Important for opus.
|
@@ -94,55 +95,51 @@ def audio_tensor_to_opus_bytes(audio_tensor: torch.Tensor, sample_rate: int = 24
|
|
94 |
|
95 |
|
96 |
# ------------------------------------------------------------------------------
|
97 |
-
#
|
98 |
# ------------------------------------------------------------------------------
|
99 |
|
100 |
-
@app.get("/tts/streaming", summary="
|
101 |
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "opus"):
|
102 |
"""
|
103 |
-
|
104 |
-
It processes text and generates audio token by token (or small chunks as KPipeline yields),
|
105 |
-
providing a more responsive streaming experience.
|
106 |
Supports WAV (PCM) and Opus formats. Opus offers significantly better compression.
|
107 |
|
108 |
The endpoint first yields a WAV header (with a dummy length) for WAV,
|
109 |
-
then yields encoded audio data
|
110 |
"""
|
111 |
sample_rate = 24000
|
112 |
num_channels = 1
|
113 |
sample_width = 2 # 16-bit PCM
|
114 |
|
115 |
-
def
|
116 |
if format.lower() == "wav":
|
117 |
-
# Yield the WAV header first.
|
118 |
header = generate_wav_header(sample_rate, num_channels, sample_width)
|
119 |
yield header
|
120 |
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
if
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
yield audio_tensor_to_opus_bytes(result.audio, sample_rate=sample_rate)
|
129 |
-
else:
|
130 |
-
raise ValueError(f"Unsupported audio format: {format}")
|
131 |
else:
|
132 |
-
|
133 |
-
except Exception as e:
|
134 |
-
print(f"Error during TTS processing: {e}")
|
135 |
-
yield b'' # Important: yield empty bytes to keep stream alive, or handle error sound
|
136 |
|
137 |
media_type = "audio/wav" if format.lower() == "wav" else "audio/opus"
|
138 |
|
139 |
return StreamingResponse(
|
140 |
-
|
141 |
media_type=media_type,
|
142 |
headers={"Cache-Control": "no-cache"},
|
143 |
)
|
144 |
|
145 |
|
|
|
|
|
|
|
|
|
146 |
@app.get("/tts/full", summary="Full TTS")
|
147 |
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
|
148 |
"""
|
@@ -186,6 +183,9 @@ def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str
|
|
186 |
raise HTTPException(status_code=400, detail=f"Unsupported audio format: {format}")
|
187 |
|
188 |
|
|
|
|
|
|
|
189 |
|
190 |
@app.get("/", response_class=HTMLResponse)
|
191 |
def index():
|
@@ -199,10 +199,10 @@ def index():
|
|
199 |
<!DOCTYPE html>
|
200 |
<html>
|
201 |
<head>
|
202 |
-
<title>Kokoro TTS Demo</title>
|
203 |
</head>
|
204 |
<body>
|
205 |
-
<h1>Kokoro TTS Demo</h1>
|
206 |
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
|
207 |
<label for="voice">Voice:</label>
|
208 |
<input type="text" id="voice" value="af_heart"><br>
|
|
|
10 |
from fastapi.middleware import Middleware
|
11 |
from fastapi.middleware.gzip import GZipMiddleware
|
12 |
|
13 |
+
from kokoro import StreamKPipeline, KModel, KPipeline # Import StreamKPipeline and KModel
|
14 |
|
15 |
app = FastAPI(
|
16 |
+
title="Kokoro Streaming TTS FastAPI",
|
17 |
middleware=[
|
18 |
Middleware(GZipMiddleware, compresslevel=9) # Add GZip compression
|
19 |
]
|
|
|
23 |
# Global Pipeline Instance
|
24 |
# ------------------------------------------------------------------------------
|
25 |
# Create one pipeline instance for the entire app.
|
26 |
+
model = KModel() # Initialize KModel
|
27 |
+
pipeline = StreamKPipeline(lang_code="a", model=model) # Initialize StreamKPipeline, passing the model
|
28 |
|
29 |
|
30 |
# ------------------------------------------------------------------------------
|
|
|
48 |
return header + fmt_chunk + data_chunk_header
|
49 |
|
50 |
|
51 |
+
def audio_chunk_to_pcm_bytes(audio_chunk: torch.Tensor) -> bytes:
|
52 |
"""
|
53 |
+
Convert a torch.FloatTensor audio chunk (values in [-1, 1]) to raw 16-bit PCM bytes.
|
54 |
"""
|
55 |
# Ensure tensor is on CPU and flatten if necessary.
|
56 |
+
audio_np = audio_chunk.cpu().numpy()
|
57 |
if audio_np.ndim > 1:
|
58 |
audio_np = audio_np.flatten()
|
59 |
# Scale to int16 range.
|
|
|
61 |
return audio_int16.tobytes()
|
62 |
|
63 |
|
64 |
+
def audio_chunk_to_opus_bytes(audio_chunk: torch.Tensor, sample_rate: int = 24000, bitrate: int = 32000) -> bytes:
|
65 |
"""
|
66 |
+
Convert a torch.FloatTensor audio chunk to Opus encoded bytes.
|
67 |
Requires the 'opuslib' package: pip install opuslib
|
68 |
"""
|
69 |
try:
|
|
|
71 |
except ImportError:
|
72 |
raise ImportError("opuslib is not installed. Please install it with: pip install opuslib")
|
73 |
|
74 |
+
audio_np = audio_chunk.cpu().numpy()
|
75 |
if audio_np.ndim > 1:
|
76 |
audio_np = audio_np.flatten()
|
77 |
# Scale to int16 range. Important for opus.
|
|
|
95 |
|
96 |
|
97 |
# ------------------------------------------------------------------------------
|
98 |
+
# Streaming TTS Endpoint
|
99 |
# ------------------------------------------------------------------------------
|
100 |
|
101 |
+
@app.get("/tts/streaming", summary="Streaming TTS")
|
102 |
def tts_streaming(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "opus"):
|
103 |
"""
|
104 |
+
Streaming TTS endpoint that returns a continuous audio stream.
|
|
|
|
|
105 |
Supports WAV (PCM) and Opus formats. Opus offers significantly better compression.
|
106 |
|
107 |
The endpoint first yields a WAV header (with a dummy length) for WAV,
|
108 |
+
then yields encoded audio data chunks as they are generated.
|
109 |
"""
|
110 |
sample_rate = 24000
|
111 |
num_channels = 1
|
112 |
sample_width = 2 # 16-bit PCM
|
113 |
|
114 |
+
def audio_chunk_generator():
|
115 |
if format.lower() == "wav":
|
116 |
+
# Yield the WAV header first for PCM WAV format.
|
117 |
header = generate_wav_header(sample_rate, num_channels, sample_width)
|
118 |
yield header
|
119 |
|
120 |
+
# Stream audio chunks from the pipeline.
|
121 |
+
for audio_chunk in pipeline(text=text, voice=voice, speed=speed):
|
122 |
+
if audio_chunk is not None and audio_chunk.numel() > 0:
|
123 |
+
if format.lower() == "wav":
|
124 |
+
yield audio_chunk_to_pcm_bytes(audio_chunk)
|
125 |
+
elif format.lower() == "opus":
|
126 |
+
yield audio_chunk_to_opus_bytes(audio_chunk, sample_rate=sample_rate)
|
|
|
|
|
|
|
127 |
else:
|
128 |
+
raise ValueError(f"Unsupported audio format: {format}")
|
|
|
|
|
|
|
129 |
|
130 |
media_type = "audio/wav" if format.lower() == "wav" else "audio/opus"
|
131 |
|
132 |
return StreamingResponse(
|
133 |
+
audio_chunk_generator(),
|
134 |
media_type=media_type,
|
135 |
headers={"Cache-Control": "no-cache"},
|
136 |
)
|
137 |
|
138 |
|
139 |
+
# ------------------------------------------------------------------------------
|
140 |
+
# Full TTS Endpoint (unchanged from your original code)
|
141 |
+
# ------------------------------------------------------------------------------
|
142 |
+
|
143 |
@app.get("/tts/full", summary="Full TTS")
|
144 |
def tts_full(text: str, voice: str = "af_heart", speed: float = 1.0, format: str = "wav"):
|
145 |
"""
|
|
|
183 |
raise HTTPException(status_code=400, detail=f"Unsupported audio format: {format}")
|
184 |
|
185 |
|
186 |
+
# ------------------------------------------------------------------------------
|
187 |
+
# HTML Demo Page Endpoint (unchanged from your original code, but updated to call new streaming endpoint)
|
188 |
+
# ------------------------------------------------------------------------------
|
189 |
|
190 |
@app.get("/", response_class=HTMLResponse)
|
191 |
def index():
|
|
|
199 |
<!DOCTYPE html>
|
200 |
<html>
|
201 |
<head>
|
202 |
+
<title>Kokoro Streaming TTS Demo</title>
|
203 |
</head>
|
204 |
<body>
|
205 |
+
<h1>Kokoro Streaming TTS Demo</h1>
|
206 |
<textarea id="text" rows="4" cols="50" placeholder="Enter text here"></textarea><br>
|
207 |
<label for="voice">Voice:</label>
|
208 |
<input type="text" id="voice" value="af_heart"><br>
|