bcadkins01 commited on
Commit
276c5ce
·
verified ·
1 Parent(s): da625bd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +35 -34
README.md CHANGED
@@ -17,49 +17,49 @@ short_description: app to generate and view beta-lactam molecules
17
 
18
  This application demonstrates a drug discovery pipeline that allows users to:
19
 
20
- Generate novel beta-lactam molecules using a generative AI model.
21
- View the generated molecules with options to display and copy SMILES or SAFE strings.
22
- Predict ADMET properties for the generated molecules using ADMET-AI.
23
 
24
  ## Features
25
 
26
- Molecule Generation:
27
- Generates up to 5 beta-lactam molecules at a time.
28
- Users can adjust the creativity (temperature) of the generation process.
29
- Generated molecules are named 'Mol01' to 'Mol05'.
30
- Molecule Viewing:
31
- Displays molecule structures using Streamlit.
32
- Option to view molecules as SMILES or SAFE strings.
33
- Provides copy-to-clipboard functionality for molecule strings.
34
- ADMET Property Prediction:
35
- Integrates ADMET-AI to predict properties such as absorption, distribution, metabolism, excretion, and toxicity.
36
- Displays predicted properties alongside each molecule.
37
 
38
  ## How to Use the App
39
 
40
- Set Generation Parameters:
41
- Use the sidebar to adjust the creativity (temperature) slider.
42
- Select the number of molecules to generate (maximum of 5).
43
- Choose String Format:
44
- Select whether to display molecule strings as SMILES or SAFE.
45
- Generate Molecules:
46
- Click the 'Generate Molecules' button.
47
- Generated molecules will appear with their structures, strings, and predicted ADMET properties.
48
- Copy Molecule Strings:
49
- Use the 'Copy' button under each molecule to copy the SMILES or SAFE string to your clipboard.
50
- Installation and Deployment
51
 
52
 
53
  ## Technical Details
54
 
55
- Generative Model: Utilizes a pre-trained BART model fine-tuned on beta-lactam structures.
56
- ADMET Predictions: Uses the ADMET-AI library to predict molecular properties.
57
- Visualization: Employs RDKit and SAFE encoding for molecule rendering.
58
- Frameworks and Libraries:
59
- Streamlit for the web interface.
60
- Transformers library for model loading and generation.
61
- RDKit for cheminformatics.
62
- Pandas for data manipulation.
63
 
64
 
65
 
@@ -72,4 +72,5 @@ This project is licensed under the terms of the MIT license.
72
 
73
  ADMET-AI: For providing tools to predict ADMET properties.
74
  OpenAI and Hugging Face: For models and tools used in molecule generation.
75
- RDKit: For cheminformatics functionalities.
 
 
17
 
18
  This application demonstrates a drug discovery pipeline that allows users to:
19
 
20
+ * Generate novel beta-lactam molecules using a generative AI model.
21
+ * View the generated molecules with options to display and copy SMILES or SAFE strings.
22
+ * Predict ADMET properties for the generated molecules using ADMET-AI.
23
 
24
  ## Features
25
 
26
+ * Molecule Generation:
27
+ * Generates up to 5 beta-lactam molecules at a time.
28
+ * Users can adjust the creativity (temperature) of the generation process.
29
+ * Generated molecules are named 'Mol01' to 'Mol05'.
30
+ * Molecule Viewing:
31
+ * Displays molecule structures using Streamlit.
32
+ * Option to view molecules as SMILES or SAFE strings.
33
+ * Provides copy-to-clipboard functionality for molecule strings.
34
+ * ADMET Property Prediction:
35
+ * Integrates ADMET-AI to predict properties such as absorption, distribution, metabolism, excretion, and toxicity.
36
+ * Displays predicted properties alongside each molecule.
37
 
38
  ## How to Use the App
39
 
40
+ 1. Set Generation Parameters:
41
+ * Use the sidebar to adjust the creativity (temperature) slider.
42
+ * Select the number of molecules to generate (maximum of 5).
43
+ 2. Choose String Format:
44
+ * Select whether to display molecule strings as SMILES or SAFE.
45
+ 3. Generate Molecules:
46
+ * Click the 'Generate Molecules' button.
47
+ * Generated molecules will appear with their structures, strings, and predicted ADMET properties.
48
+ 4. Copy Molecule Strings:
49
+ * Use the 'Copy' button under each molecule to copy the SMILES or SAFE string to your clipboard.
50
+
51
 
52
 
53
  ## Technical Details
54
 
55
+ * Generative Model: Uses the model: 'seyonec/PubChem10M_SMILES_BPE_450k' fine-tuned on beta-lactam structures.
56
+ * ADMET Predictions: Uses the ADMET-AI library to predict molecular properties.
57
+ * Visualization: Employs RDKit and SAFE encoding for molecule rendering.
58
+ * Frameworks and Libraries:
59
+ * Streamlit for the web interface.
60
+ * Transformers library for model loading and generation.
61
+ * RDKit for cheminformatics.
62
+
63
 
64
 
65
 
 
72
 
73
  ADMET-AI: For providing tools to predict ADMET properties.
74
  OpenAI and Hugging Face: For models and tools used in molecule generation.
75
+ RDKit: For cheminformatics functionalities.
76
+ ***Cite other papers here as well***