import gradio as gr from rdkit import Chem from rdkit.Chem import Draw, Descriptors, AllChem from rdkit.DataStructs.cDataStructs import ConvertToNumpyArray import numpy as np import xgboost as xgb from PIL import Image # Load the XGBoost model model = xgb.XGBClassifier() model.load_model("xg3.json") # Function to convert SMILES string to descriptors and Lipinski features def predict_smiles(smiles): mol = Chem.MolFromSmiles(smiles) if mol is None: # Check if the conversion was unsuccessful return None, "Invalid SMILES string. Please enter a valid SMILES." fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048) fp_array = np.zeros((1,), dtype=int) ConvertToNumpyArray(fp, fp_array) lipinski_features = np.array([[Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHAcceptors(mol), Descriptors.NumHDonors(mol)]]) # Combine fingerprint and Lipinski features features = np.concatenate([fp_array, lipinski_features.flatten()]) return features, lipinski_features # Updated function to predict from SMILES and visualize Lipinski's features def predict_and_visualize(smiles): features, lipinski_features = predict_smiles(smiles) if features is None: # Return a clear message for invalid SMILES, a placeholder for the features, and None for the image error_message = "Invalid SMILES string. Please enter a valid SMILES." placeholder_features = "RDKit estimates
Not applicable due to invalid SMILES input." return error_message, placeholder_features, None # Process valid SMILES molecular_weight, alogp, hba, hbd = lipinski_features.flatten() molecular_weight = round(molecular_weight, 1) alogp = round(alogp, 1) hba = int(hba) hbd = int(hbd) lipinski_features = np.array([[molecular_weight, alogp, hba, hbd]]) prediction = model.predict(features.reshape(1, -1)) result = "drug-like" if prediction == 1 else "not drug-like" mol = Chem.MolFromSmiles(smiles) img = Draw.MolToImage(mol) img = img.resize((800, 800), Image.Resampling.LANCZOS) features_names = ["Molecular Weight", "AlogP", "HBA", "HBD"] lipinski_str = "RDKit estimates
" + "
".join([f"{name}: {value}" for name, value in zip(features_names, [molecular_weight, alogp, hba, hbd])]) return result, lipinski_str, img # Gradio interface iface = gr.Interface(fn=predict_and_visualize, inputs=gr.Textbox(lines=2, placeholder="Enter SMILES string here..."), outputs=[gr.Text(label="Prediction"), gr.HTML(label="Lipinski's Features"), gr.Image(label="Molecule Visualization")], title="XGBoost Drug-like Classifier", description="This application predicts whether a molecule is drug-like based on its SMILES representation.") if __name__ == "__main__": iface.launch()