import gradio as gr
from rdkit import Chem
from rdkit.Chem import Draw, Descriptors, AllChem
from rdkit.DataStructs.cDataStructs import ConvertToNumpyArray
import numpy as np
import xgboost as xgb
from PIL import Image
# Load the XGBoost model
model = xgb.XGBClassifier()
model.load_model("xg3.json")
# Function to convert SMILES string to descriptors and Lipinski features
def predict_smiles(smiles):
mol = Chem.MolFromSmiles(smiles)
if mol is None: # Check if the conversion was unsuccessful
return None, "Invalid SMILES string. Please enter a valid SMILES."
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, nBits=2048)
fp_array = np.zeros((1,), dtype=int)
ConvertToNumpyArray(fp, fp_array)
lipinski_features = np.array([[Descriptors.MolWt(mol), Descriptors.MolLogP(mol), Descriptors.NumHAcceptors(mol), Descriptors.NumHDonors(mol)]])
# Combine fingerprint and Lipinski features
features = np.concatenate([fp_array, lipinski_features.flatten()])
return features, lipinski_features
# Updated function to predict from SMILES and visualize Lipinski's features
def predict_and_visualize(smiles):
features, lipinski_features = predict_smiles(smiles)
if features is None:
# Return a clear message for invalid SMILES, a placeholder for the features, and None for the image
error_message = "Invalid SMILES string. Please enter a valid SMILES."
placeholder_features = "RDKit estimates
Not applicable due to invalid SMILES input."
return error_message, placeholder_features, None
# Process valid SMILES
molecular_weight, alogp, hba, hbd = lipinski_features.flatten()
molecular_weight = round(molecular_weight, 1)
alogp = round(alogp, 1)
hba = int(hba)
hbd = int(hbd)
lipinski_features = np.array([[molecular_weight, alogp, hba, hbd]])
prediction = model.predict(features.reshape(1, -1))
result = "drug-like" if prediction == 1 else "not drug-like"
mol = Chem.MolFromSmiles(smiles)
img = Draw.MolToImage(mol)
img = img.resize((800, 800), Image.Resampling.LANCZOS)
features_names = ["Molecular Weight", "AlogP", "HBA", "HBD"]
lipinski_str = "RDKit estimates
" + "
".join([f"{name}: {value}" for name, value in zip(features_names, [molecular_weight, alogp, hba, hbd])])
return result, lipinski_str, img
# Gradio interface
iface = gr.Interface(fn=predict_and_visualize,
inputs=gr.Textbox(lines=2, placeholder="Enter SMILES string here..."),
outputs=[gr.Text(label="Prediction"),
gr.HTML(label="Lipinski's Features"),
gr.Image(label="Molecule Visualization")],
title="XGBoost Drug-like Classifier",
description="This application predicts whether a molecule is drug-like based on its SMILES representation.")
if __name__ == "__main__":
iface.launch()