Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, send_from_directory
|
2 |
+
from flask_cors import CORS
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
import torch
|
5 |
+
from datasets import load_dataset
|
6 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
CORS(app)
|
11 |
+
|
12 |
+
# Load the DialoGPT model and tokenizer
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
|
14 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
|
15 |
+
|
16 |
+
# Load the Bitext Travel Dataset
|
17 |
+
try:
|
18 |
+
dataset = load_dataset("bitext/Bitext-travel-llm-chatbot-training-dataset")
|
19 |
+
print("Bitext dataset loaded successfully.")
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading Bitext dataset: {str(e)}")
|
22 |
+
dataset = None
|
23 |
+
|
24 |
+
# Load a pre-trained sentence transformer model for semantic similarity
|
25 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
26 |
+
|
27 |
+
|
28 |
+
def find_closest_response(user_input):
|
29 |
+
if dataset is None:
|
30 |
+
return "I'm sorry, but I couldn't load the travel dataset. Please try again later."
|
31 |
+
|
32 |
+
try:
|
33 |
+
# Precompute embeddings for all instructions in the dataset
|
34 |
+
instructions = [example['instruction'] for example in dataset['train']]
|
35 |
+
instruction_embeddings = sentence_model.encode(instructions)
|
36 |
+
|
37 |
+
# Encode the user input
|
38 |
+
user_embedding = sentence_model.encode([user_input])
|
39 |
+
|
40 |
+
# Compute cosine similarity between the user input and all instructions
|
41 |
+
similarities = cosine_similarity(
|
42 |
+
user_embedding, instruction_embeddings)
|
43 |
+
closest_index = similarities.argmax()
|
44 |
+
|
45 |
+
# Return the closest response
|
46 |
+
return dataset['train'][closest_index]['response']
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error finding closest response: {str(e)}")
|
49 |
+
return "I'm sorry, but I couldn't find a suitable response. Please try again."
|
50 |
+
|
51 |
+
|
52 |
+
def chat_with_bot(user_input, chat_history_ids=None):
|
53 |
+
try:
|
54 |
+
# Find the closest response from the Bitext dataset
|
55 |
+
closest_response = find_closest_response(user_input)
|
56 |
+
print(f"Closest response: {closest_response}") # Debugging statement
|
57 |
+
|
58 |
+
# Generate a response using DialoGPT
|
59 |
+
new_user_input_ids = tokenizer.encode(
|
60 |
+
user_input + tokenizer.eos_token, return_tensors='pt')
|
61 |
+
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids],
|
62 |
+
dim=-1) if chat_history_ids is not None else new_user_input_ids
|
63 |
+
chat_history_ids = model.generate(
|
64 |
+
bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
|
65 |
+
bot_reply = tokenizer.decode(
|
66 |
+
chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
67 |
+
print(f"DialoGPT response: {bot_reply}") # Debugging statement
|
68 |
+
|
69 |
+
# Combine the Bitext response and DialoGPT response
|
70 |
+
combined_response = f"{closest_response}\n\n{bot_reply}"
|
71 |
+
|
72 |
+
return combined_response, chat_history_ids
|
73 |
+
except Exception as e:
|
74 |
+
print(f"Exception: {str(e)}") # Print the full exception
|
75 |
+
return "Sorry, an unexpected error occurred. Please try again.", None
|
76 |
+
|
77 |
+
# Serve the HTML file
|
78 |
+
|
79 |
+
|
80 |
+
@app.route("/")
|
81 |
+
def serve_html():
|
82 |
+
return send_from_directory(".", "index.html")
|
83 |
+
|
84 |
+
# Chat route
|
85 |
+
|
86 |
+
|
87 |
+
@app.route("/chat", methods=["POST"])
|
88 |
+
def chat():
|
89 |
+
user_input = request.json.get("message")
|
90 |
+
if not user_input:
|
91 |
+
return jsonify({"error": "No message provided"}), 400
|
92 |
+
|
93 |
+
# Get the chat history from the session (if any)
|
94 |
+
chat_history_ids = request.json.get("chat_history_ids")
|
95 |
+
if chat_history_ids:
|
96 |
+
chat_history_ids = torch.tensor(
|
97 |
+
chat_history_ids) # Convert back to a tensor
|
98 |
+
|
99 |
+
# Get the bot's response
|
100 |
+
bot_response, chat_history_ids = chat_with_bot(
|
101 |
+
user_input, chat_history_ids)
|
102 |
+
|
103 |
+
# Convert chat_history_ids to a list for JSON serialization
|
104 |
+
chat_history_ids_list = chat_history_ids.tolist(
|
105 |
+
) if chat_history_ids is not None else None
|
106 |
+
|
107 |
+
return jsonify({
|
108 |
+
"response": bot_response,
|
109 |
+
"chat_history_ids": chat_history_ids_list
|
110 |
+
})
|
111 |
+
|
112 |
+
|
113 |
+
if __name__ == "__main__":
|
114 |
+
app.run(debug=True)
|