Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import sys | |
| sys.path.append("./bazel-bin") | |
| from wavegru_mod import WaveGRU | |
| sys.path.pop() | |
| def extract_weight_mask(net): | |
| data = {} | |
| data["embed_weight"] = net.embed.weight | |
| data["gru_xh_zr_weight"] = net.rnn.xh_zr_fc.weight | |
| data["gru_xh_zr_mask"] = net.gru_pruner.xh_zr_fc_mask | |
| data["gru_xh_zr_bias"] = net.rnn.xh_zr_fc.bias | |
| data["gru_xh_h_weight"] = net.rnn.xh_h_fc.weight | |
| data["gru_xh_h_mask"] = net.gru_pruner.xh_h_fc_mask | |
| data["gru_xh_h_bias"] = net.rnn.xh_h_fc.bias | |
| data["o1_weight"] = net.o1.weight | |
| data["o1_mask"] = net.o1_pruner.mask | |
| data["o1_bias"] = net.o1.bias | |
| data["o2_weight"] = net.o2.weight | |
| data["o2_mask"] = net.o2_pruner.mask | |
| data["o2_bias"] = net.o2.bias | |
| return data | |
| def load_wavegru_cpp(data): | |
| embed = data["embed_weight"] | |
| embed_dim = embed.shape[1] | |
| rnn_dim = data["gru_xh_h_bias"].shape[0] | |
| input_dim = data["gru_xh_zr_weight"].shape[1] - rnn_dim | |
| net = WaveGRU(input_dim, embed_dim, rnn_dim) | |
| net.load_embed(embed) | |
| dim = embed_dim + input_dim + rnn_dim | |
| z, r = np.split(data["gru_xh_zr_weight"].T, 2, axis=0) | |
| h = data["gru_xh_h_weight"].T | |
| z = np.ascontiguousarray(z) | |
| r = np.ascontiguousarray(r) | |
| h = np.ascontiguousarray(h) | |
| b1, b2 = np.split(data["gru_xh_zr_bias"], 2) | |
| b3 = data["gru_xh_h_bias"] | |
| m1, m2, m3 = z, r, h | |
| mask_z, mask_r = np.split(data["gru_xh_zr_mask"].T, 2, axis=0) | |
| mask_h = data["gru_xh_h_mask"].T | |
| mask_z = np.ascontiguousarray(mask_z) | |
| mask_r = np.ascontiguousarray(mask_r) | |
| mask_h = np.ascontiguousarray(mask_h) | |
| mask1, mask2, mask3 = mask_z, mask_r, mask_h | |
| o1 = np.ascontiguousarray(data["o1_weight"].T) | |
| masko1 = np.ascontiguousarray(data["o1_mask"].T) | |
| o1b = data["o1_bias"] | |
| o2 = np.ascontiguousarray(data["o2_weight"].T) | |
| masko2 = np.ascontiguousarray(data["o2_mask"].T) | |
| o2b = data["o2_bias"] | |
| net.load_weights( | |
| m1, | |
| mask1, | |
| b1, | |
| m2, | |
| mask2, | |
| b2, | |
| m3, | |
| mask3, | |
| b3, | |
| o1, | |
| masko1, | |
| o1b, | |
| o2, | |
| masko2, | |
| o2b, | |
| ) | |
| return net | |