File size: 6,302 Bytes
ba0d063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import cv2
import torch
import numpy as np
import gradio as gr
from PIL import Image, ImageDraw
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from transformers import OwlViTProcessor, OwlViTForObjectDetection
import gc

models = {
	'vit_b': './checkpoints/sam_vit_b_01ec64.pth',
	'vit_l': './checkpoints/sam_vit_l_0b3195.pth',
	'vit_h': './checkpoints/sam_vit_h_4b8939.pth'
}


def plot_boxes(img, boxes):
	img_pil = Image.fromarray(np.uint8(img * 255)).convert('RGB')
	draw = ImageDraw.Draw(img_pil)
	for box in boxes:
		color = tuple(np.random.randint(0, 255, size=3).tolist())
		x0, y0, x1, y1 = box
		x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
		draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
	return img_pil


def segment_one(img, mask_generator, seed=None):
	if seed is not None:
		np.random.seed(seed)
	masks = mask_generator.generate(img)
	sorted_anns = sorted(masks, key=(lambda x: x['area']), reverse=True)
	mask_all = np.ones((img.shape[0], img.shape[1], 3))
	for ann in sorted_anns:
		m = ann['segmentation']
		color_mask = np.random.random((1, 3)).tolist()[0]
		for i in range(3):
			mask_all[m == True, i] = color_mask[i]
	result = img / 255 * 0.3 + mask_all * 0.7
	return result, mask_all


def generator_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
                        min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh,
                        input_x, progress=gr.Progress()):
	# sam model
	sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
	mask_generator = SamAutomaticMaskGenerator(
		sam,
		points_per_side=points_per_side,
		pred_iou_thresh=pred_iou_thresh,
		stability_score_thresh=stability_score_thresh,
		stability_score_offset=stability_score_offset,
		box_nms_thresh=box_nms_thresh,
		crop_n_layers=crop_n_layers,
		crop_nms_thresh=crop_nms_thresh,
		crop_overlap_ratio=512 / 1500,
		crop_n_points_downscale_factor=1,
		point_grids=None,
		min_mask_region_area=min_mask_region_area,
		output_mode='binary_mask'
	)

	# input is image, type: numpy
	if type(input_x) == np.ndarray:
		result, mask_all = segment_one(input_x, mask_generator)
		return result, mask_all
	elif isinstance(input_x, str):  # input is video, type: path (str)
		cap = cv2.VideoCapture(input_x)  # read video
		frames_num = cap.get(cv2.CAP_PROP_FRAME_COUNT)
		W, H = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
		fps = int(cap.get(cv2.CAP_PROP_FPS))
		out = cv2.VideoWriter("output.mp4", cv2.VideoWriter_fourcc('x', '2', '6', '4'), fps, (W, H), isColor=True)
		for _ in progress.tqdm(range(int(frames_num)),
		                       desc='Processing video ({} frames, size {}x{})'.format(int(frames_num), W, H)):
			ret, frame = cap.read()  # read a frame
			result, mask_all = segment_one(frame, mask_generator, seed=2023)
			result = (result * 255).astype(np.uint8)
			out.write(result)
		out.release()
		cap.release()
		return 'output.mp4'


def predictor_inference(device, model_type, input_x, input_text, owl_vit_threshold=0.1):
	# sam model
	sam = sam_model_registry[model_type](checkpoint=models[model_type]).to(device)
	predictor = SamPredictor(sam)
	predictor.set_image(input_x)  # Process the image to produce an image embedding

	# split input text
	input_text = [input_text.split(',')]

	# OWL-ViT model
	# processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
	# owlvit_model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
	processor = OwlViTProcessor.from_pretrained('./checkpoints/models--google--owlvit-base-patch32')
	owlvit_model = OwlViTForObjectDetection.from_pretrained("./checkpoints/models--google--owlvit-base-patch32").to(device)

	# get outputs
	input_text = processor(text=input_text, images=input_x, return_tensors="pt").to(device)
	outputs = owlvit_model(**input_text)
	target_size = torch.Tensor([input_x.shape[:2]]).to(device)
	results = processor.post_process_object_detection(outputs=outputs, target_sizes=target_size,
	                                                  threshold=owl_vit_threshold)

	# get the box with best score
	scores = torch.sigmoid(outputs.logits)
	# best_scores, best_idxs = torch.topk(scores, k=1, dim=1)
	# best_idxs = best_idxs.squeeze(1).tolist()

	i = 0  # Retrieve predictions for the first image for the corresponding text queries
	boxes_tensor = results[i]["boxes"]  # [best_idxs]
	print(boxes_tensor.size())
	boxes = boxes_tensor.cpu().detach().numpy()
	transformed_boxes = predictor.transform.apply_boxes_torch(torch.Tensor(boxes).to(device),
	                                                          input_x.shape[:2])  # apply transform to original boxes

	# predict segmentation according to the boxes
	masks, scores, logits = predictor.predict_torch(
		point_coords=None,
		point_labels=None,
		boxes=transformed_boxes,  # only one box
		multimask_output=False,
	)
	masks = masks.cpu().detach().numpy()
	mask_all = np.ones((input_x.shape[0], input_x.shape[1], 3))
	for ann in masks:
		color_mask = np.random.random((1, 3)).tolist()[0]
		for i in range(3):
			mask_all[ann[0] == True, i] = color_mask[i]
	img = input_x / 255 * 0.3 + mask_all * 0.7
	img = plot_boxes(img, boxes_tensor)  # image + mask + boxes

	# free the memory
	owlvit_model.cpu()
	del owlvit_model
	del input_text
	gc.collect()
	torch.cuda.empty_cache()

	return img, mask_all


def run_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh, min_mask_region_area,
                  stability_score_offset, box_nms_thresh, crop_n_layers, crop_nms_thresh, owl_vit_threshold, input_x,
                  input_text):
	print('prompt text: ', input_text)
	if input_text != '' and not isinstance(input_x, str):  # user input text
		print('use predictor_inference')
		return predictor_inference(device, model_type, input_x, input_text, owl_vit_threshold)
	else:
		print('use generator_inference')
		return generator_inference(device, model_type, points_per_side, pred_iou_thresh, stability_score_thresh,
		                           min_mask_region_area, stability_score_offset, box_nms_thresh, crop_n_layers,
		                           crop_nms_thresh, input_x)