import torch import gradio as gr from PIL import Image, ImageDraw, ImageFont # Use a pipeline as a high-level helper from transformers import pipeline # model_path = "../Models/models--facebook--detr-resnet-50/snapshots/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b" object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") # object_detector = pipeline("object-detection", model=model_path) def draw_bounding_boxes(image, detections, font_path=None, font_size=500): """ Draws bounding boxes on the given image based on the detections. :param image: PIL.Image object :param detections: List of detection results, where each result is a dictionary containing 'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin', 'ymin', 'xmax', 'ymax' keys. :param font_path: Path to the TrueType font file to use for text. :param font_size: Size of the font to use for text. :return: PIL.Image object with bounding boxes drawn. """ # Make a copy of the image to draw on draw_image = image.copy() draw = ImageDraw.Draw(draw_image) # Load custom font or default font if path not provided if font_path: font = ImageFont.truetype(font_path, font_size) else: # Use default font, increase font size with TTF font if necessary font = ImageFont.load_default() for detection in detections: box = detection['box'] xmin = box['xmin'] ymin = box['ymin'] xmax = box['xmax'] ymax = box['ymax'] # Draw the bounding box draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) # Optionally, draw the label and score label = detection['label'] score = detection['score'] text = f"{label} {score:.2f}" # Draw text with background rectangle for visibility if font_path: text_size = draw.textbbox((xmin, ymin), text, font=font) else: text_size = draw.textbbox((xmin, ymin), text) draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") draw.text((xmin, ymin), text, fill="white", font=font) return draw_image # for text output # raw_image = Image.open("../Files/cat.jpg") # output = object_detector(raw_image) # print(output) # Function for object detection and bounding box drawing def detect_object(image): raw_image = image output = object_detector(raw_image) processed_image = draw_bounding_boxes(raw_image, output) return processed_image demo = gr.Interface( fn=detect_object, inputs=[gr.Image(label="Select Image", type="pil")], outputs=[gr.Image(label="Processed Image", type="pil")], title="Project 05: Object Detector", description="As understood from the title, if not already, this application will detect objects in your image" ) demo.launch()