Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image, ImageDraw, ImageFont
|
4 |
+
|
5 |
+
# Use a pipeline as a high-level helper
|
6 |
+
from transformers import pipeline
|
7 |
+
|
8 |
+
# model_path = "../Models/models--facebook--detr-resnet-50/snapshots/1d5f47bd3bdd2c4bbfa585418ffe6da5028b4c0b"
|
9 |
+
|
10 |
+
object_detector = pipeline("object-detection", model="facebook/detr-resnet-50")
|
11 |
+
|
12 |
+
# object_detector = pipeline("object-detection", model=model_path)
|
13 |
+
|
14 |
+
|
15 |
+
def draw_bounding_boxes(image, detections, font_path=None, font_size=500):
|
16 |
+
"""
|
17 |
+
Draws bounding boxes on the given image based on the detections.
|
18 |
+
:param image: PIL.Image object
|
19 |
+
:param detections: List of detection results, where each result is a dictionary containing
|
20 |
+
'score', 'label', and 'box' keys. 'box' itself is a dictionary with 'xmin',
|
21 |
+
'ymin', 'xmax', 'ymax' keys.
|
22 |
+
:param font_path: Path to the TrueType font file to use for text.
|
23 |
+
:param font_size: Size of the font to use for text.
|
24 |
+
:return: PIL.Image object with bounding boxes drawn.
|
25 |
+
"""
|
26 |
+
# Make a copy of the image to draw on
|
27 |
+
draw_image = image.copy()
|
28 |
+
draw = ImageDraw.Draw(draw_image)
|
29 |
+
|
30 |
+
# Load custom font or default font if path not provided
|
31 |
+
if font_path:
|
32 |
+
font = ImageFont.truetype(font_path, font_size)
|
33 |
+
else:
|
34 |
+
# Use default font, increase font size with TTF font if necessary
|
35 |
+
font = ImageFont.load_default()
|
36 |
+
|
37 |
+
for detection in detections:
|
38 |
+
box = detection['box']
|
39 |
+
xmin = box['xmin']
|
40 |
+
ymin = box['ymin']
|
41 |
+
xmax = box['xmax']
|
42 |
+
ymax = box['ymax']
|
43 |
+
|
44 |
+
# Draw the bounding box
|
45 |
+
draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3)
|
46 |
+
|
47 |
+
# Optionally, draw the label and score
|
48 |
+
label = detection['label']
|
49 |
+
score = detection['score']
|
50 |
+
text = f"{label} {score:.2f}"
|
51 |
+
|
52 |
+
# Draw text with background rectangle for visibility
|
53 |
+
if font_path:
|
54 |
+
text_size = draw.textbbox((xmin, ymin), text, font=font)
|
55 |
+
else:
|
56 |
+
text_size = draw.textbbox((xmin, ymin), text)
|
57 |
+
|
58 |
+
draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red")
|
59 |
+
draw.text((xmin, ymin), text, fill="white", font=font)
|
60 |
+
|
61 |
+
return draw_image
|
62 |
+
|
63 |
+
|
64 |
+
# for text output
|
65 |
+
# raw_image = Image.open("../Files/cat.jpg")
|
66 |
+
# output = object_detector(raw_image)
|
67 |
+
# print(output)
|
68 |
+
|
69 |
+
|
70 |
+
# Function for object detection and bounding box drawing
|
71 |
+
def detect_object(image):
|
72 |
+
raw_image = image
|
73 |
+
output = object_detector(raw_image)
|
74 |
+
processed_image = draw_bounding_boxes(raw_image, output)
|
75 |
+
return processed_image
|
76 |
+
|
77 |
+
|
78 |
+
demo = gr.Interface(
|
79 |
+
fn=detect_object,
|
80 |
+
inputs=[gr.Image(label="Select Image", type="pil")],
|
81 |
+
outputs=[gr.Image(label="Processed Image", type="pil")],
|
82 |
+
title="Project 05: Object Detector",
|
83 |
+
description="As understood from the title, if not already, this application will detect objects in your image"
|
84 |
+
)
|
85 |
+
|
86 |
+
demo.launch()
|