basharat8763's picture
Update app.py
323eaa3 verified
import torch
import gradio as gr
from PIL import Image
import scipy.io.wavfile as wavfile
# Use a pipeline as a high-level helper
from transformers import pipeline
caption_image = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs")
def generate_audio(text):
# Generate the narrated text
narrated_text = narrator(text)
# Save the audio to a WAV file
wavfile.write("output.wav", rate=narrated_text["sampling_rate"],
data=narrated_text["audio"][0])
# Return the path to the saved audio file
return "output.wav"
def caption_my_image(pil_image):
semantics = caption_image(images=pil_image)[0]['generated_text']
return generate_audio(semantics)
demo = gr.Interface(
fn=caption_my_image,
inputs=[gr.Image(label="Select Image", type="pil")],
outputs=[gr.Audio(label="Image Caption")],
title="Project 07: Image Captioning",
description="As understood from the title, if not already, this application will caption your image"
)
demo.launch()