Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Use a pipeline as a high-level helper
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# downloaded the model from web
|
8 |
+
pipe = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6",
|
9 |
+
torch_dtype=torch.bfloat16)
|
10 |
+
|
11 |
+
# def summary(input):
|
12 |
+
# output = text_summary(input)
|
13 |
+
# return output[0]['summary_text']
|
14 |
+
#
|
15 |
+
#
|
16 |
+
gr.close_all()
|
17 |
+
|
18 |
+
# simple gradio web app
|
19 |
+
# demo = gr.Interface(fn=summary, inputs="text", outputs="text")
|
20 |
+
|
21 |
+
# beautified
|
22 |
+
demo = gr.Interface(
|
23 |
+
fn=summary,
|
24 |
+
inputs=[gr.Textbox(label="Input text to summarize", lines=6)],
|
25 |
+
outputs=[gr.Textbox(label="Summarized text", lines=4)],
|
26 |
+
title="Project 01: Text Summarization",
|
27 |
+
description="As understood from the title, if not already, this application will summarize your text"
|
28 |
+
)
|
29 |
+
|
30 |
+
demo.launch()
|