Spaces:
Sleeping
Sleeping
import torch | |
import gradio as gr | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
# downloaded the model from web | |
text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", | |
torch_dtype=torch.bfloat16) | |
def summary(input): | |
output = text_summary(input) | |
return output[0]['summary_text'] | |
gr.close_all() | |
# simple gradio web app | |
# demo = gr.Interface(fn=summary, inputs="text", outputs="text") | |
# beautified | |
demo = gr.Interface( | |
fn=summary, | |
inputs=[gr.Textbox(label="Input text to summarize", lines=6)], | |
outputs=[gr.Textbox(label="Summarized text", lines=4)], | |
title="Project 01: Text Summarization", | |
description="As understood from the title, if not already, this application will summarize your text" | |
) | |
demo.launch() | |