Spaces:
Sleeping
Sleeping
Commit
·
4f61238
1
Parent(s):
3b2900b
yeah
Browse files- my_metricv2.py +64 -29
- tests.py +34 -14
my_metricv2.py
CHANGED
|
@@ -29,8 +29,10 @@ year={2020}
|
|
| 29 |
|
| 30 |
# TODO: Add description of the module here
|
| 31 |
_DESCRIPTION = """\
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
# TODO: Add description of the arguments of the module here
|
|
@@ -42,35 +44,70 @@ Args:
|
|
| 42 |
should be a string with tokens separated by spaces.
|
| 43 |
references: list of reference for each prediction. Each
|
| 44 |
reference should be a string with tokens separated by spaces.
|
|
|
|
|
|
|
|
|
|
| 45 |
Returns:
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
Examples:
|
| 49 |
>>> import numpy as np
|
| 50 |
-
>>>
|
| 51 |
-
|
| 52 |
-
>>>
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
"""
|
| 70 |
|
| 71 |
-
# TODO: Define external resources urls if needed
|
| 72 |
-
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
|
| 73 |
-
|
| 74 |
|
| 75 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 76 |
class MyMetricv2(evaluate.Metric):
|
|
@@ -145,6 +182,4 @@ def calculate(predictions, references, max_iou: float = 0.5):
|
|
| 145 |
|
| 146 |
mh = mm.metrics.create()
|
| 147 |
summary = mh.compute(acc)
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
return summary
|
|
|
|
| 29 |
|
| 30 |
# TODO: Add description of the module here
|
| 31 |
_DESCRIPTION = """\
|
| 32 |
+
The MOT Metrics module is designed to evaluate multi-object tracking (MOT)
|
| 33 |
+
algorithms by computing various metrics based on predicted and ground truth bounding
|
| 34 |
+
boxes. It serves as a crucial tool in assessing the performance of MOT systems,
|
| 35 |
+
aiding in the iterative improvement of tracking algorithms."""
|
| 36 |
|
| 37 |
|
| 38 |
# TODO: Add description of the arguments of the module here
|
|
|
|
| 44 |
should be a string with tokens separated by spaces.
|
| 45 |
references: list of reference for each prediction. Each
|
| 46 |
reference should be a string with tokens separated by spaces.
|
| 47 |
+
max_iou (`float`, *optional*):
|
| 48 |
+
If specified, this is the minimum Intersection over Union (IoU) threshold to consider a detection as a true positive.
|
| 49 |
+
Default is 0.5.
|
| 50 |
Returns:
|
| 51 |
+
summary: pandas.DataFrame with the following columns:
|
| 52 |
+
- idf1 (IDF1 Score): The F1 score for the identity assignment, computed as 2 * (IDP * IDR) / (IDP + IDR).
|
| 53 |
+
- idp (ID Precision): Identity Precision, representing the ratio of correctly assigned identities to the total number of predicted identities.
|
| 54 |
+
- idr (ID Recall): Identity Recall, representing the ratio of correctly assigned identities to the total number of ground truth identities.
|
| 55 |
+
- recall: Recall, computed as the ratio of the number of correctly tracked objects to the total number of ground truth objects.
|
| 56 |
+
- precision: Precision, computed as the ratio of the number of correctly tracked objects to the total number of predicted objects.
|
| 57 |
+
- num_unique_objects: Total number of unique objects in the ground truth.
|
| 58 |
+
- mostly_tracked: Number of objects that are mostly tracked throughout the sequence.
|
| 59 |
+
- partially_tracked: Number of objects that are partially tracked but not mostly tracked.
|
| 60 |
+
- mostly_lost: Number of objects that are mostly lost throughout the sequence.
|
| 61 |
+
- num_false_positives: Number of false positive detections (predicted objects not present in the ground truth).
|
| 62 |
+
- num_misses: Number of missed detections (ground truth objects not detected in the predictions).
|
| 63 |
+
- num_switches: Number of identity switches.
|
| 64 |
+
- num_fragmentations: Number of fragmented objects (objects that are broken into multiple tracks).
|
| 65 |
+
- mota (MOTA - Multiple Object Tracking Accuracy): Overall tracking accuracy, computed as 1 - ((num_false_positives + num_misses + num_switches) / num_unique_objects).
|
| 66 |
+
- motp (MOTP - Multiple Object Tracking Precision): Average precision of the object localization, computed as the mean of the localization errors of correctly detected objects.
|
| 67 |
+
- num_transfer: Number of track transfers.
|
| 68 |
+
- num_ascend: Number of ascended track IDs.
|
| 69 |
+
- num_migrate: Number of track ID migrations.
|
| 70 |
+
|
| 71 |
Examples:
|
| 72 |
>>> import numpy as np
|
| 73 |
+
>>> module = evaluate.load("bascobasculino/my_metricv2")
|
| 74 |
+
|
| 75 |
+
>>> predicted =[
|
| 76 |
+
[1,1,10,20,30,40,0.85],
|
| 77 |
+
[1,2,50,60,70,80,0.92],
|
| 78 |
+
[1,3,80,90,100,110,0.75],
|
| 79 |
+
[2,1,15,25,35,45,0.78],
|
| 80 |
+
[2,2,55,65,75,85,0.95],
|
| 81 |
+
[3,1,20,30,40,50,0.88],
|
| 82 |
+
[3,2,60,70,80,90,0.82],
|
| 83 |
+
[4,1,25,35,45,55,0.91],
|
| 84 |
+
[4,2,65,75,85,95,0.89]
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
>>> ground_truth = [
|
| 88 |
+
[1, 1, 10, 20, 30, 40],
|
| 89 |
+
[1, 2, 50, 60, 70, 80],
|
| 90 |
+
[1, 3, 85, 95, 105, 115],
|
| 91 |
+
[2, 1, 15, 25, 35, 45],
|
| 92 |
+
[2, 2, 55, 65, 75, 85],
|
| 93 |
+
[3, 1, 20, 30, 40, 50],
|
| 94 |
+
[3, 2, 60, 70, 80, 90],
|
| 95 |
+
[4, 1, 25, 35, 45, 55],
|
| 96 |
+
[5, 1, 30, 40, 50, 60],
|
| 97 |
+
[5, 2, 70, 80, 90, 100]
|
| 98 |
+
]
|
| 99 |
+
>>> predicted = [np.array(a) for a in predicted]
|
| 100 |
+
>>> ground_truth = [np.array(a) for a in ground_truth]
|
| 101 |
+
|
| 102 |
+
>>> results = module._compute(predictions=predicted, references=ground_truth, max_iou=0.5)
|
| 103 |
+
>>> print(results)
|
| 104 |
+
{'idf1': {0: 0.8421052631578947}, 'idp': {0: 0.8888888888888888}, 'idr': {0: 0.8}, 'recall': {0: 0.8},
|
| 105 |
+
'precision': {0: 0.8888888888888888}, 'num_unique_objects': {0: 3}, 'mostly_tracked': {0: 2},
|
| 106 |
+
'partially_tracked': {0: 1}, 'mostly_lost': {0: 0}, 'num_false_positives': {0: 1}, 'num_misses': {0: 2},
|
| 107 |
+
'num_switches': {0: 0}, 'num_fragmentations': {0: 0}, 'mota': {0: 0.7}, 'motp': {0: 0.02981870229007634},
|
| 108 |
+
'num_transfer': {0: 0}, 'num_ascend': {0: 0}, 'num_migrate': {0: 0}}
|
| 109 |
"""
|
| 110 |
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 113 |
class MyMetricv2(evaluate.Metric):
|
|
|
|
| 182 |
|
| 183 |
mh = mm.metrics.create()
|
| 184 |
summary = mh.compute(acc)
|
| 185 |
+
return summary.to_dict()
|
|
|
|
|
|
tests.py
CHANGED
|
@@ -1,17 +1,37 @@
|
|
|
|
|
| 1 |
test_cases = [
|
| 2 |
{
|
| 3 |
-
"predictions": [
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
"references": [
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
]
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
test_cases = [
|
| 3 |
{
|
| 4 |
+
"predictions": [np.array(a) for a in [
|
| 5 |
+
[1,1,10,20,30,40,0.85],
|
| 6 |
+
[1,2,50,60,70,80,0.92],
|
| 7 |
+
[1,3,80,90,100,110,0.75],
|
| 8 |
+
[2,1,15,25,35,45,0.78],
|
| 9 |
+
[2,2,55,65,75,85,0.95],
|
| 10 |
+
[3,1,20,30,40,50,0.88],
|
| 11 |
+
[3,2,60,70,80,90,0.82],
|
| 12 |
+
[4,1,25,35,45,55,0.91],
|
| 13 |
+
[4,2,65,75,85,95,0.89]
|
| 14 |
+
]],
|
| 15 |
+
"references": [np.array(a) for a in [
|
| 16 |
+
[1, 1, 10, 20, 30, 40],
|
| 17 |
+
[1, 2, 50, 60, 70, 80],
|
| 18 |
+
[1, 3, 85, 95, 105, 115],
|
| 19 |
+
[2, 1, 15, 25, 35, 45],
|
| 20 |
+
[2, 2, 55, 65, 75, 85],
|
| 21 |
+
[3, 1, 20, 30, 40, 50],
|
| 22 |
+
[3, 2, 60, 70, 80, 90],
|
| 23 |
+
[4, 1, 25, 35, 45, 55],
|
| 24 |
+
[5, 1, 30, 40, 50, 60],
|
| 25 |
+
[5, 2, 70, 80, 90, 100]
|
| 26 |
+
]],
|
| 27 |
+
"result": {'idf1': {0: 0.8421052631578947}, 'idp': {0: 0.8888888888888888},
|
| 28 |
+
'idr': {0: 0.8}, 'recall': {0: 0.8}, 'precision': {0: 0.8888888888888888},
|
| 29 |
+
'num_unique_objects': {0: 3}, 'mostly_tracked': {0: 2},
|
| 30 |
+
'partially_tracked': {0: 1}, 'mostly_lost': {0: 0},
|
| 31 |
+
'num_false_positives': {0: 1}, 'num_misses': {0: 2},
|
| 32 |
+
'num_switches': {0: 0}, 'num_fragmentations': {0: 0},
|
| 33 |
+
'mota': {0: 0.7}, 'motp': {0: 0.02981870229007634},
|
| 34 |
+
'num_transfer': {0: 0}, 'num_ascend': {0: 0},
|
| 35 |
+
'num_migrate': {0: 0}}
|
| 36 |
+
},
|
| 37 |
]
|