File size: 6,338 Bytes
b6bc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b001c5
 
b6bc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51908c1
b6bc598
 
 
 
 
 
 
 
 
 
51908c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6bc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e154d
b7d7aaa
 
f5e154d
b7d7aaa
f5e154d
b6bc598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b001c5
51908c1
5f754d3
68c72a6
51908c1
 
 
0fc63e3
 
 
 
51908c1
 
68c72a6
51908c1
68c72a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d45cf
 
 
 
3b2900b
f2d45cf
68c72a6
3b2900b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""

import evaluate
import datasets
import motmetrics as mm
import numpy as np

# TODO: Add BibTeX citation
_CITATION = """\
@InProceedings{huggingface:module,
title = {A great new module},
authors={huggingface, Inc.},
year={2020}
}
"""

# TODO: Add description of the module here
_DESCRIPTION = """\
This new module is designed to solve this great ML task and is crafted with a lot of care.
"""


# TODO: Add description of the arguments of the module here
_KWARGS_DESCRIPTION = """

Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of predictions to score. Each predictions
        should be a string with tokens separated by spaces.
    references: list of reference for each prediction. Each
        reference should be a string with tokens separated by spaces.
Returns:
    accuracy: description of the first score,
    another_score: description of the second score,
Examples:
    >>> import numpy as np
    >>> mean_iou = evaluate.load("mean_iou")

    >>> # suppose one has 3 different segmentation maps predicted
    >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])
    >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])

    >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])
    >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])

    >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])
    >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])

    >>> predicted = [predicted_1, predicted_2, predicted_3]
    >>> ground_truth = [actual_1, actual_2, actual_3]

    >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)
    >>> print(results) # doctest: +NORMALIZE_WHITESPACE
    {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0.   , 0.   , 0.375, 0.4  , 0.5  , 0.   , 0.5  , 1.   , 1.   , 1.   ]), 'per_category_accuracy': array([0.        , 0.        , 0.75      , 0.66666667, 1.        , 0.        , 0.5       , 1.        , 1.        , 1.        ])}

"""

# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class MyMetricv2(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features({
                "predictions": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            ),
                "references": datasets.Sequence(
                                datasets.Sequence(datasets.Value("float"))
                            )
            }),
            # Homepage of the module for documentation
            homepage="http://module.homepage",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"]
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        # TODO: Download external resources if needed
        pass

    def _compute(self, predictions, references):
        """Returns the scores"""
        # TODO: Compute the different scores of the module

        return calculate(predictions, references)

def calculate(predictions, references, max_iou: float = 0.5):
    """Returns the scores"""
    try: 
        np_predictions = np.array(predictions)
    except:
        raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
    
    try:
        np_references = np.array(references)
    except:
        raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
    
    if np_predictions.shape[1] != 7:
        raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
    if np_references.shape[1] != 6:
        raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")

    if np_predictions[:, 0].min() <= 0:
        raise ValueError("The frame number in the predictions should be a positive integer")
    if np_references[:, 0].min() <= 0:
        raise ValueError("The frame number in the references should be a positive integer")


    num_frames = max(np_references[:, 0].max(), np_predictions[:, 0].max())

    acc = mm.MOTAccumulator(auto_id=True)
    for i in range(1, num_frames+1):
        preds = np_predictions[np_predictions[:, 0] == i, 1:6]
        refs = np_references[np_references[:, 0] == i, 1:6]
        C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = max_iou)
        acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)

    mh = mm.metrics.create()
    summary = mh.compute(acc)


    return summary