Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- app.py +16 -19
- requirements.txt +5 -3
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
-
import os
|
2 |
import logging
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
-
from transformers import AutoModelForCausalLM,
|
5 |
from peft import PeftModel, PeftConfig
|
|
|
|
|
6 |
|
7 |
# Set up logging
|
8 |
logging.basicConfig(level=logging.INFO)
|
@@ -15,39 +16,35 @@ app = FastAPI()
|
|
15 |
model = None
|
16 |
tokenizer = None
|
17 |
pipe = None
|
|
|
18 |
|
19 |
@app.on_event("startup")
|
20 |
async def load_model():
|
21 |
-
global model, tokenizer, pipe
|
22 |
|
23 |
try:
|
24 |
-
# Get Hugging Face token from environment variable
|
25 |
-
hf_token = os.environ.get("HUGGINGFACE_TOKEN")
|
26 |
-
|
27 |
logger.info("Loading PEFT configuration...")
|
28 |
config = PeftConfig.from_pretrained("frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
|
29 |
|
30 |
logger.info("Loading base model...")
|
31 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
32 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
33 |
-
token=hf_token if hf_token else None,
|
34 |
-
use_auth_token=True if not hf_token else None
|
35 |
-
)
|
36 |
|
37 |
logger.info("Loading PEFT model...")
|
38 |
model = PeftModel.from_pretrained(base_model, "frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
|
39 |
|
40 |
logger.info("Loading tokenizer...")
|
41 |
-
tokenizer =
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
)
|
46 |
|
47 |
logger.info("Creating pipeline...")
|
48 |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
49 |
|
50 |
logger.info("Model, tokenizer, and pipeline loaded successfully.")
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
logger.error(f"Error loading model or creating pipeline: {e}")
|
53 |
raise
|
@@ -58,12 +55,12 @@ def home():
|
|
58 |
|
59 |
@app.get("/generate")
|
60 |
async def generate(text: str):
|
61 |
-
if not
|
62 |
raise HTTPException(status_code=503, detail="Model not loaded")
|
63 |
|
64 |
try:
|
65 |
-
output =
|
66 |
-
return {"output": output
|
67 |
except Exception as e:
|
68 |
logger.error(f"Error during text generation: {e}")
|
69 |
raise HTTPException(status_code=500, detail=f"Error during text generation: {str(e)}")
|
|
|
|
|
1 |
import logging
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
+
from transformers import AutoModelForCausalLM, pipeline
|
4 |
from peft import PeftModel, PeftConfig
|
5 |
+
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
6 |
+
from mistral_common.client import MistralChain
|
7 |
|
8 |
# Set up logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
|
|
16 |
model = None
|
17 |
tokenizer = None
|
18 |
pipe = None
|
19 |
+
mistral_chain = None
|
20 |
|
21 |
@app.on_event("startup")
|
22 |
async def load_model():
|
23 |
+
global model, tokenizer, pipe, mistral_chain
|
24 |
|
25 |
try:
|
|
|
|
|
|
|
26 |
logger.info("Loading PEFT configuration...")
|
27 |
config = PeftConfig.from_pretrained("frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
|
28 |
|
29 |
logger.info("Loading base model...")
|
30 |
+
base_model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
|
|
|
|
|
|
|
|
31 |
|
32 |
logger.info("Loading PEFT model...")
|
33 |
model = PeftModel.from_pretrained(base_model, "frankmorales2020/Mistral-7B-text-to-sql-flash-attention-2-dataeval")
|
34 |
|
35 |
logger.info("Loading tokenizer...")
|
36 |
+
tokenizer = MistralTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
37 |
+
|
38 |
+
logger.info("Creating MistralChain...")
|
39 |
+
mistral_chain = MistralChain(model, tokenizer)
|
|
|
40 |
|
41 |
logger.info("Creating pipeline...")
|
42 |
pipe = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
|
43 |
|
44 |
logger.info("Model, tokenizer, and pipeline loaded successfully.")
|
45 |
+
except ImportError as e:
|
46 |
+
logger.error(f"Error importing required modules. Please check your installation: {e}")
|
47 |
+
raise
|
48 |
except Exception as e:
|
49 |
logger.error(f"Error loading model or creating pipeline: {e}")
|
50 |
raise
|
|
|
55 |
|
56 |
@app.get("/generate")
|
57 |
async def generate(text: str):
|
58 |
+
if not mistral_chain:
|
59 |
raise HTTPException(status_code=503, detail="Model not loaded")
|
60 |
|
61 |
try:
|
62 |
+
output = mistral_chain.generate(text, max_tokens=100)
|
63 |
+
return {"output": output}
|
64 |
except Exception as e:
|
65 |
logger.error(f"Error during text generation: {e}")
|
66 |
raise HTTPException(status_code=500, detail=f"Error during text generation: {str(e)}")
|
requirements.txt
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
fastapi==0.103.0
|
|
|
2 |
uvicorn[standard]==0.17.*
|
3 |
torch>=1.13.0
|
4 |
-
transformers>=4.
|
5 |
numpy<2
|
6 |
-
peft>=0.
|
7 |
accelerate>=0.24.1,<0.25.0
|
8 |
huggingface_hub>=0.16.4,<0.18.0
|
9 |
-
tokenizers>=0.14.0,<0.15.0
|
|
|
|
1 |
fastapi==0.103.0
|
2 |
+
requests==2.27.*
|
3 |
uvicorn[standard]==0.17.*
|
4 |
torch>=1.13.0
|
5 |
+
transformers>=4.36.0,<5.0.0
|
6 |
numpy<2
|
7 |
+
peft>=0.8.0
|
8 |
accelerate>=0.24.1,<0.25.0
|
9 |
huggingface_hub>=0.16.4,<0.18.0
|
10 |
+
tokenizers>=0.14.0,<0.15.0
|
11 |
+
git+https://github.com/mistralai/mistral-common.git@main
|