Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,132 +1,90 @@
|
|
| 1 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
-
from fastapi.responses import JSONResponse
|
| 3 |
-
from pydantic import BaseModel
|
| 4 |
-
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
-
|
| 8 |
-
import
|
| 9 |
-
import
|
| 10 |
-
import os
|
| 11 |
-
|
| 12 |
-
#
|
| 13 |
-
import
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
"
|
| 43 |
-
)
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
"
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
image
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
)
|
| 91 |
-
text, ocr_bbox = ocr_bbox_rslt
|
| 92 |
-
dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
| 93 |
-
image_save_path,
|
| 94 |
-
yolo_model,
|
| 95 |
-
BOX_TRESHOLD=box_threshold,
|
| 96 |
-
output_coord_in_ratio=True,
|
| 97 |
-
ocr_bbox=ocr_bbox,
|
| 98 |
-
draw_bbox_config=draw_bbox_config,
|
| 99 |
-
caption_model_processor=caption_model_processor,
|
| 100 |
-
ocr_text=text,
|
| 101 |
-
iou_threshold=iou_threshold,
|
| 102 |
-
)
|
| 103 |
-
image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img)))
|
| 104 |
-
print("finish processing")
|
| 105 |
-
parsed_content_list_str = "\n".join(parsed_content_list)
|
| 106 |
-
|
| 107 |
-
# Encode image to base64
|
| 108 |
-
buffered = io.BytesIO()
|
| 109 |
-
image.save(buffered, format="PNG")
|
| 110 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 111 |
-
|
| 112 |
-
return ProcessResponse(
|
| 113 |
-
image=img_str,
|
| 114 |
-
parsed_content_list=str(parsed_content_list_str),
|
| 115 |
-
label_coordinates=str(label_coordinates),
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
@app.post("/process_image", response_model=ProcessResponse)
|
| 120 |
-
async def process_image(
|
| 121 |
-
image_file: UploadFile = File(...),
|
| 122 |
-
box_threshold: float = 0.05,
|
| 123 |
-
iou_threshold: float = 0.1,
|
| 124 |
-
):
|
| 125 |
-
try:
|
| 126 |
-
contents = await image_file.read()
|
| 127 |
-
image_input = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 128 |
-
except Exception as e:
|
| 129 |
-
raise HTTPException(status_code=400, detail="Invalid image file")
|
| 130 |
-
|
| 131 |
-
response = process(image_input, box_threshold, iou_threshold)
|
| 132 |
-
return response
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile, HTTPException
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
import base64
|
| 5 |
+
import io
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import torch
|
| 8 |
+
from ultralytics import YOLO
|
| 9 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
# Import utility functions
|
| 13 |
+
from utils import check_ocr_box, get_som_labeled_img
|
| 14 |
+
|
| 15 |
+
# Initialize models and processor
|
| 16 |
+
try:
|
| 17 |
+
yolo_model = YOLO("weights/icon_detect/best.pt").to("cuda")
|
| 18 |
+
except Exception as e:
|
| 19 |
+
raise RuntimeError(f"Error loading YOLO model: {e}")
|
| 20 |
+
|
| 21 |
+
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
| 22 |
+
try:
|
| 23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
"weights/icon_caption_florence", torch_dtype=torch.float16, trust_remote_code=True
|
| 25 |
+
).to("cuda")
|
| 26 |
+
except Exception as e:
|
| 27 |
+
raise RuntimeError(f"Error loading captioning model: {e}")
|
| 28 |
+
|
| 29 |
+
caption_model_processor = {"processor": processor, "model": model}
|
| 30 |
+
|
| 31 |
+
# FastAPI app initialization
|
| 32 |
+
app = FastAPI()
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class ProcessResponse(BaseModel):
|
| 36 |
+
image: str # Base64 encoded image
|
| 37 |
+
parsed_content_list: str
|
| 38 |
+
label_coordinates: str
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def process(image_input: Image.Image, box_threshold: float, iou_threshold: float) -> ProcessResponse:
|
| 42 |
+
image_save_path = "imgs/saved_image_demo.png"
|
| 43 |
+
image_input.save(image_save_path)
|
| 44 |
+
|
| 45 |
+
# Image processing and OCR
|
| 46 |
+
ocr_bbox_rslt, _ = check_ocr_box(
|
| 47 |
+
image_save_path, display_img=False, output_bb_format="xyxy", use_paddleocr=True
|
| 48 |
+
)
|
| 49 |
+
text, ocr_bbox = ocr_bbox_rslt
|
| 50 |
+
|
| 51 |
+
# Labeling the image with YOLO and captioning
|
| 52 |
+
dino_labeled_img, label_coordinates, parsed_content_list = get_som_labeled_img(
|
| 53 |
+
image_save_path,
|
| 54 |
+
yolo_model,
|
| 55 |
+
BOX_TRESHOLD=box_threshold,
|
| 56 |
+
output_coord_in_ratio=True,
|
| 57 |
+
ocr_bbox=ocr_bbox,
|
| 58 |
+
caption_model_processor=caption_model_processor,
|
| 59 |
+
ocr_text=text,
|
| 60 |
+
iou_threshold=iou_threshold,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Convert labeled image to base64
|
| 64 |
+
image = Image.open(io.BytesIO(base64.b64decode(dino_labeled_img)))
|
| 65 |
+
buffered = io.BytesIO()
|
| 66 |
+
image.save(buffered, format="PNG")
|
| 67 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 68 |
+
|
| 69 |
+
parsed_content_str = "\n".join(parsed_content_list)
|
| 70 |
+
|
| 71 |
+
return ProcessResponse(
|
| 72 |
+
image=img_str,
|
| 73 |
+
parsed_content_list=parsed_content_str,
|
| 74 |
+
label_coordinates=str(label_coordinates),
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
@app.post("/process_image", response_model=ProcessResponse)
|
| 79 |
+
async def process_image(
|
| 80 |
+
image_file: UploadFile = File(...),
|
| 81 |
+
box_threshold: float = 0.05,
|
| 82 |
+
iou_threshold: float = 0.1,
|
| 83 |
+
):
|
| 84 |
+
try:
|
| 85 |
+
contents = await image_file.read()
|
| 86 |
+
image_input = Image.open(io.BytesIO(contents)).convert("RGB")
|
| 87 |
+
except Exception as e:
|
| 88 |
+
raise HTTPException(status_code=400, detail="Invalid image file")
|
| 89 |
+
|
| 90 |
+
return process(image_input, box_threshold, iou_threshold)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|