Spaces:
Running
Running
export default /* glsl */` | |
// Analytical approximation of the DFG LUT, one half of the | |
// split-sum approximation used in indirect specular lighting. | |
// via 'environmentBRDF' from "Physically Based Shading on Mobile" | |
// https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile | |
vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) { | |
const vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 ); | |
const vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 ); | |
vec4 r = roughness * c0 + c1; | |
float a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y; | |
return vec2( -1.04, 1.04 ) * a004 + r.zw; | |
} | |
float punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) { | |
#if defined ( PHYSICALLY_CORRECT_LIGHTS ) | |
// based upon Frostbite 3 Moving to Physically-based Rendering | |
// page 32, equation 26: E[window1] | |
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf | |
// this is intended to be used on spot and point lights who are represented as luminous intensity | |
// but who must be converted to luminous irradiance for surface lighting calculation | |
float distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 ); | |
if( cutoffDistance > 0.0 ) { | |
distanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) ); | |
} | |
return distanceFalloff; | |
#else | |
if( cutoffDistance > 0.0 && decayExponent > 0.0 ) { | |
return pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent ); | |
} | |
return 1.0; | |
#endif | |
} | |
vec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) { | |
return RECIPROCAL_PI * diffuseColor; | |
} // validated | |
vec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) { | |
// Original approximation by Christophe Schlick '94 | |
// float fresnel = pow( 1.0 - dotLH, 5.0 ); | |
// Optimized variant (presented by Epic at SIGGRAPH '13) | |
// https://cdn2.unrealengine.com/Resources/files/2013SiggraphPresentationsNotes-26915738.pdf | |
float fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH ); | |
return ( 1.0 - specularColor ) * fresnel + specularColor; | |
} // validated | |
// Microfacet Models for Refraction through Rough Surfaces - equation (34) | |
// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html | |
// alpha is "roughness squared" in Disney’s reparameterization | |
float G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) { | |
// geometry term (normalized) = G(l)⋅G(v) / 4(n⋅l)(n⋅v) | |
// also see #12151 | |
float a2 = pow2( alpha ); | |
float gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); | |
float gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); | |
return 1.0 / ( gl * gv ); | |
} // validated | |
// Moving Frostbite to Physically Based Rendering 3.0 - page 12, listing 2 | |
// https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf | |
float G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) { | |
float a2 = pow2( alpha ); | |
// dotNL and dotNV are explicitly swapped. This is not a mistake. | |
float gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) ); | |
float gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) ); | |
return 0.5 / max( gv + gl, EPSILON ); | |
} | |
// Microfacet Models for Refraction through Rough Surfaces - equation (33) | |
// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html | |
// alpha is "roughness squared" in Disney’s reparameterization | |
float D_GGX( const in float alpha, const in float dotNH ) { | |
float a2 = pow2( alpha ); | |
float denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0; // avoid alpha = 0 with dotNH = 1 | |
return RECIPROCAL_PI * a2 / pow2( denom ); | |
} | |
// GGX Distribution, Schlick Fresnel, GGX-Smith Visibility | |
vec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) { | |
float alpha = pow2( roughness ); // UE4's roughness | |
vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir ); | |
float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) ); | |
float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); | |
float dotNH = saturate( dot( geometry.normal, halfDir ) ); | |
float dotLH = saturate( dot( incidentLight.direction, halfDir ) ); | |
vec3 F = F_Schlick( specularColor, dotLH ); | |
float G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV ); | |
float D = D_GGX( alpha, dotNH ); | |
return F * ( G * D ); | |
} // validated | |
// Rect Area Light | |
// Real-Time Polygonal-Light Shading with Linearly Transformed Cosines | |
// by Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt | |
// code: https://github.com/selfshadow/ltc_code/ | |
vec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) { | |
const float LUT_SIZE = 64.0; | |
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; | |
const float LUT_BIAS = 0.5 / LUT_SIZE; | |
float dotNV = saturate( dot( N, V ) ); | |
// texture parameterized by sqrt( GGX alpha ) and sqrt( 1 - cos( theta ) ) | |
vec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) ); | |
uv = uv * LUT_SCALE + LUT_BIAS; | |
return uv; | |
} | |
float LTC_ClippedSphereFormFactor( const in vec3 f ) { | |
// Real-Time Area Lighting: a Journey from Research to Production (p.102) | |
// An approximation of the form factor of a horizon-clipped rectangle. | |
float l = length( f ); | |
return max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 ); | |
} | |
vec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) { | |
float x = dot( v1, v2 ); | |
float y = abs( x ); | |
// rational polynomial approximation to theta / sin( theta ) / 2PI | |
float a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y; | |
float b = 3.4175940 + ( 4.1616724 + y ) * y; | |
float v = a / b; | |
float theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v; | |
return cross( v1, v2 ) * theta_sintheta; | |
} | |
vec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) { | |
// bail if point is on back side of plane of light | |
// assumes ccw winding order of light vertices | |
vec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ]; | |
vec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ]; | |
vec3 lightNormal = cross( v1, v2 ); | |
if( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 ); | |
// construct orthonormal basis around N | |
vec3 T1, T2; | |
T1 = normalize( V - N * dot( V, N ) ); | |
T2 = - cross( N, T1 ); // negated from paper; possibly due to a different handedness of world coordinate system | |
// compute transform | |
mat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) ); | |
// transform rect | |
vec3 coords[ 4 ]; | |
coords[ 0 ] = mat * ( rectCoords[ 0 ] - P ); | |
coords[ 1 ] = mat * ( rectCoords[ 1 ] - P ); | |
coords[ 2 ] = mat * ( rectCoords[ 2 ] - P ); | |
coords[ 3 ] = mat * ( rectCoords[ 3 ] - P ); | |
// project rect onto sphere | |
coords[ 0 ] = normalize( coords[ 0 ] ); | |
coords[ 1 ] = normalize( coords[ 1 ] ); | |
coords[ 2 ] = normalize( coords[ 2 ] ); | |
coords[ 3 ] = normalize( coords[ 3 ] ); | |
// calculate vector form factor | |
vec3 vectorFormFactor = vec3( 0.0 ); | |
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] ); | |
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] ); | |
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] ); | |
vectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] ); | |
// adjust for horizon clipping | |
float result = LTC_ClippedSphereFormFactor( vectorFormFactor ); | |
/* | |
// alternate method of adjusting for horizon clipping (see referece) | |
// refactoring required | |
float len = length( vectorFormFactor ); | |
float z = vectorFormFactor.z / len; | |
const float LUT_SIZE = 64.0; | |
const float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE; | |
const float LUT_BIAS = 0.5 / LUT_SIZE; | |
// tabulated horizon-clipped sphere, apparently... | |
vec2 uv = vec2( z * 0.5 + 0.5, len ); | |
uv = uv * LUT_SCALE + LUT_BIAS; | |
float scale = texture2D( ltc_2, uv ).w; | |
float result = len * scale; | |
*/ | |
return vec3( result ); | |
} | |
// End Rect Area Light | |
// ref: https://www.unrealengine.com/blog/physically-based-shading-on-mobile - environmentBRDF for GGX on mobile | |
vec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) { | |
float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); | |
vec2 brdf = integrateSpecularBRDF( dotNV, roughness ); | |
return specularColor * brdf.x + brdf.y; | |
} // validated | |
// Fdez-Agüera's "Multiple-Scattering Microfacet Model for Real-Time Image Based Lighting" | |
// Approximates multiscattering in order to preserve energy. | |
// http://www.jcgt.org/published/0008/01/03/ | |
void BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) { | |
float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); | |
vec3 F = F_Schlick( specularColor, dotNV ); | |
vec2 brdf = integrateSpecularBRDF( dotNV, roughness ); | |
vec3 FssEss = F * brdf.x + brdf.y; | |
float Ess = brdf.x + brdf.y; | |
float Ems = 1.0 - Ess; | |
// Paper incorrect indicates coefficient is PI/21, and will | |
// be corrected to 1/21 in future updates. | |
vec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619; // 1/21 | |
vec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg ); | |
singleScatter += FssEss; | |
multiScatter += Fms * Ems; | |
} | |
float G_BlinnPhong_Implicit( /* const in float dotNL, const in float dotNV */ ) { | |
// geometry term is (n dot l)(n dot v) / 4(n dot l)(n dot v) | |
return 0.25; | |
} | |
float D_BlinnPhong( const in float shininess, const in float dotNH ) { | |
return RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess ); | |
} | |
vec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) { | |
vec3 halfDir = normalize( incidentLight.direction + geometry.viewDir ); | |
//float dotNL = saturate( dot( geometry.normal, incidentLight.direction ) ); | |
//float dotNV = saturate( dot( geometry.normal, geometry.viewDir ) ); | |
float dotNH = saturate( dot( geometry.normal, halfDir ) ); | |
float dotLH = saturate( dot( incidentLight.direction, halfDir ) ); | |
vec3 F = F_Schlick( specularColor, dotLH ); | |
float G = G_BlinnPhong_Implicit( /* dotNL, dotNV */ ); | |
float D = D_BlinnPhong( shininess, dotNH ); | |
return F * ( G * D ); | |
} // validated | |
// source: http://simonstechblog.blogspot.ca/2011/12/microfacet-brdf.html | |
float GGXRoughnessToBlinnExponent( const in float ggxRoughness ) { | |
return ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 ); | |
} | |
float BlinnExponentToGGXRoughness( const in float blinnExponent ) { | |
return sqrt( 2.0 / ( blinnExponent + 2.0 ) ); | |
} | |
`; | |