Spaces:
Running
Running
/** | |
* @author zz85 / https://github.com/zz85 | |
* | |
* Based on "A Practical Analytic Model for Daylight" | |
* aka The Preetham Model, the de facto standard analytic skydome model | |
* http://www.cs.utah.edu/~shirley/papers/sunsky/sunsky.pdf | |
* | |
* First implemented by Simon Wallner | |
* http://www.simonwallner.at/projects/atmospheric-scattering | |
* | |
* Improved by Martin Upitis | |
* http://blenderartists.org/forum/showthread.php?245954-preethams-sky-impementation-HDR | |
* | |
* Three.js integration by zz85 http://twitter.com/blurspline | |
*/ | |
THREE.Sky = function () { | |
var shader = THREE.Sky.SkyShader; | |
var material = new THREE.ShaderMaterial( { | |
fragmentShader: shader.fragmentShader, | |
vertexShader: shader.vertexShader, | |
uniforms: THREE.UniformsUtils.clone( shader.uniforms ), | |
side: THREE.BackSide | |
} ); | |
THREE.Mesh.call( this, new THREE.BoxBufferGeometry( 1, 1, 1 ), material ); | |
}; | |
THREE.Sky.prototype = Object.create( THREE.Mesh.prototype ); | |
THREE.Sky.SkyShader = { | |
uniforms: { | |
"luminance": { value: 1 }, | |
"turbidity": { value: 2 }, | |
"rayleigh": { value: 1 }, | |
"mieCoefficient": { value: 0.005 }, | |
"mieDirectionalG": { value: 0.8 }, | |
"sunPosition": { value: new THREE.Vector3() } | |
}, | |
vertexShader: [ | |
'uniform vec3 sunPosition;', | |
'uniform float rayleigh;', | |
'uniform float turbidity;', | |
'uniform float mieCoefficient;', | |
'varying vec3 vWorldPosition;', | |
'varying vec3 vSunDirection;', | |
'varying float vSunfade;', | |
'varying vec3 vBetaR;', | |
'varying vec3 vBetaM;', | |
'varying float vSunE;', | |
'const vec3 up = vec3( 0.0, 1.0, 0.0 );', | |
// constants for atmospheric scattering | |
'const float e = 2.71828182845904523536028747135266249775724709369995957;', | |
'const float pi = 3.141592653589793238462643383279502884197169;', | |
// wavelength of used primaries, according to preetham | |
'const vec3 lambda = vec3( 680E-9, 550E-9, 450E-9 );', | |
// this pre-calcuation replaces older TotalRayleigh(vec3 lambda) function: | |
// (8.0 * pow(pi, 3.0) * pow(pow(n, 2.0) - 1.0, 2.0) * (6.0 + 3.0 * pn)) / (3.0 * N * pow(lambda, vec3(4.0)) * (6.0 - 7.0 * pn)) | |
'const vec3 totalRayleigh = vec3( 5.804542996261093E-6, 1.3562911419845635E-5, 3.0265902468824876E-5 );', | |
// mie stuff | |
// K coefficient for the primaries | |
'const float v = 4.0;', | |
'const vec3 K = vec3( 0.686, 0.678, 0.666 );', | |
// MieConst = pi * pow( ( 2.0 * pi ) / lambda, vec3( v - 2.0 ) ) * K | |
'const vec3 MieConst = vec3( 1.8399918514433978E14, 2.7798023919660528E14, 4.0790479543861094E14 );', | |
// earth shadow hack | |
// cutoffAngle = pi / 1.95; | |
'const float cutoffAngle = 1.6110731556870734;', | |
'const float steepness = 1.5;', | |
'const float EE = 1000.0;', | |
'float sunIntensity( float zenithAngleCos ) {', | |
' zenithAngleCos = clamp( zenithAngleCos, -1.0, 1.0 );', | |
' return EE * max( 0.0, 1.0 - pow( e, -( ( cutoffAngle - acos( zenithAngleCos ) ) / steepness ) ) );', | |
'}', | |
'vec3 totalMie( float T ) {', | |
' float c = ( 0.2 * T ) * 10E-18;', | |
' return 0.434 * c * MieConst;', | |
'}', | |
'void main() {', | |
' vec4 worldPosition = modelMatrix * vec4( position, 1.0 );', | |
' vWorldPosition = worldPosition.xyz;', | |
' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );', | |
' gl_Position.z = gl_Position.w;', // set z to camera.far | |
' vSunDirection = normalize( sunPosition );', | |
' vSunE = sunIntensity( dot( vSunDirection, up ) );', | |
' vSunfade = 1.0 - clamp( 1.0 - exp( ( sunPosition.y / 450000.0 ) ), 0.0, 1.0 );', | |
' float rayleighCoefficient = rayleigh - ( 1.0 * ( 1.0 - vSunfade ) );', | |
// extinction (absorbtion + out scattering) | |
// rayleigh coefficients | |
' vBetaR = totalRayleigh * rayleighCoefficient;', | |
// mie coefficients | |
' vBetaM = totalMie( turbidity ) * mieCoefficient;', | |
'}' | |
].join( '\n' ), | |
fragmentShader: [ | |
'varying vec3 vWorldPosition;', | |
'varying vec3 vSunDirection;', | |
'varying float vSunfade;', | |
'varying vec3 vBetaR;', | |
'varying vec3 vBetaM;', | |
'varying float vSunE;', | |
'uniform float luminance;', | |
'uniform float mieDirectionalG;', | |
'const vec3 cameraPos = vec3( 0.0, 0.0, 0.0 );', | |
// constants for atmospheric scattering | |
'const float pi = 3.141592653589793238462643383279502884197169;', | |
'const float n = 1.0003;', // refractive index of air | |
'const float N = 2.545E25;', // number of molecules per unit volume for air at 288.15K and 1013mb (sea level -45 celsius) | |
// optical length at zenith for molecules | |
'const float rayleighZenithLength = 8.4E3;', | |
'const float mieZenithLength = 1.25E3;', | |
'const vec3 up = vec3( 0.0, 1.0, 0.0 );', | |
// 66 arc seconds -> degrees, and the cosine of that | |
'const float sunAngularDiameterCos = 0.999956676946448443553574619906976478926848692873900859324;', | |
// 3.0 / ( 16.0 * pi ) | |
'const float THREE_OVER_SIXTEENPI = 0.05968310365946075;', | |
// 1.0 / ( 4.0 * pi ) | |
'const float ONE_OVER_FOURPI = 0.07957747154594767;', | |
'float rayleighPhase( float cosTheta ) {', | |
' return THREE_OVER_SIXTEENPI * ( 1.0 + pow( cosTheta, 2.0 ) );', | |
'}', | |
'float hgPhase( float cosTheta, float g ) {', | |
' float g2 = pow( g, 2.0 );', | |
' float inverse = 1.0 / pow( 1.0 - 2.0 * g * cosTheta + g2, 1.5 );', | |
' return ONE_OVER_FOURPI * ( ( 1.0 - g2 ) * inverse );', | |
'}', | |
// Filmic ToneMapping http://filmicgames.com/archives/75 | |
'const float A = 0.15;', | |
'const float B = 0.50;', | |
'const float C = 0.10;', | |
'const float D = 0.20;', | |
'const float E = 0.02;', | |
'const float F = 0.30;', | |
'const float whiteScale = 1.0748724675633854;', // 1.0 / Uncharted2Tonemap(1000.0) | |
'vec3 Uncharted2Tonemap( vec3 x ) {', | |
' return ( ( x * ( A * x + C * B ) + D * E ) / ( x * ( A * x + B ) + D * F ) ) - E / F;', | |
'}', | |
'void main() {', | |
// optical length | |
// cutoff angle at 90 to avoid singularity in next formula. | |
' float zenithAngle = acos( max( 0.0, dot( up, normalize( vWorldPosition - cameraPos ) ) ) );', | |
' float inverse = 1.0 / ( cos( zenithAngle ) + 0.15 * pow( 93.885 - ( ( zenithAngle * 180.0 ) / pi ), -1.253 ) );', | |
' float sR = rayleighZenithLength * inverse;', | |
' float sM = mieZenithLength * inverse;', | |
// combined extinction factor | |
' vec3 Fex = exp( -( vBetaR * sR + vBetaM * sM ) );', | |
// in scattering | |
' float cosTheta = dot( normalize( vWorldPosition - cameraPos ), vSunDirection );', | |
' float rPhase = rayleighPhase( cosTheta * 0.5 + 0.5 );', | |
' vec3 betaRTheta = vBetaR * rPhase;', | |
' float mPhase = hgPhase( cosTheta, mieDirectionalG );', | |
' vec3 betaMTheta = vBetaM * mPhase;', | |
' vec3 Lin = pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * ( 1.0 - Fex ), vec3( 1.5 ) );', | |
' Lin *= mix( vec3( 1.0 ), pow( vSunE * ( ( betaRTheta + betaMTheta ) / ( vBetaR + vBetaM ) ) * Fex, vec3( 1.0 / 2.0 ) ), clamp( pow( 1.0 - dot( up, vSunDirection ), 5.0 ), 0.0, 1.0 ) );', | |
// nightsky | |
' vec3 direction = normalize( vWorldPosition - cameraPos );', | |
' float theta = acos( direction.y ); // elevation --> y-axis, [-pi/2, pi/2]', | |
' float phi = atan( direction.z, direction.x ); // azimuth --> x-axis [-pi/2, pi/2]', | |
' vec2 uv = vec2( phi, theta ) / vec2( 2.0 * pi, pi ) + vec2( 0.5, 0.0 );', | |
' vec3 L0 = vec3( 0.1 ) * Fex;', | |
// composition + solar disc | |
' float sundisk = smoothstep( sunAngularDiameterCos, sunAngularDiameterCos + 0.00002, cosTheta );', | |
' L0 += ( vSunE * 19000.0 * Fex ) * sundisk;', | |
' vec3 texColor = ( Lin + L0 ) * 0.04 + vec3( 0.0, 0.0003, 0.00075 );', | |
' vec3 curr = Uncharted2Tonemap( ( log2( 2.0 / pow( luminance, 4.0 ) ) ) * texColor );', | |
' vec3 color = curr * whiteScale;', | |
' vec3 retColor = pow( color, vec3( 1.0 / ( 1.2 + ( 1.2 * vSunfade ) ) ) );', | |
' gl_FragColor = vec4( retColor, 1.0 );', | |
'}' | |
].join( '\n' ) | |
}; | |