Spaces:
Running
Running
/* | |
* @author zz85 / http://twitter.com/blurspline / http://www.lab4games.net/zz85/blog | |
* | |
* Simplification Geometry Modifier | |
* - based on code and technique | |
* - by Stan Melax in 1998 | |
* - Progressive Mesh type Polygon Reduction Algorithm | |
* - http://www.melax.com/polychop/ | |
*/ | |
THREE.SimplifyModifier = function () {}; | |
( function () { | |
var cb = new THREE.Vector3(), ab = new THREE.Vector3(); | |
function pushIfUnique( array, object ) { | |
if ( array.indexOf( object ) === - 1 ) array.push( object ); | |
} | |
function removeFromArray( array, object ) { | |
var k = array.indexOf( object ); | |
if ( k > - 1 ) array.splice( k, 1 ); | |
} | |
function computeEdgeCollapseCost( u, v ) { | |
// if we collapse edge uv by moving u to v then how | |
// much different will the model change, i.e. the "error". | |
var edgelength = v.position.distanceTo( u.position ); | |
var curvature = 0; | |
var sideFaces = []; | |
var i, il = u.faces.length, face, sideFace; | |
// find the "sides" triangles that are on the edge uv | |
for ( i = 0; i < il; i ++ ) { | |
face = u.faces[ i ]; | |
if ( face.hasVertex( v ) ) { | |
sideFaces.push( face ); | |
} | |
} | |
// use the triangle facing most away from the sides | |
// to determine our curvature term | |
for ( i = 0; i < il; i ++ ) { | |
var minCurvature = 1; | |
face = u.faces[ i ]; | |
for ( var j = 0; j < sideFaces.length; j ++ ) { | |
sideFace = sideFaces[ j ]; | |
// use dot product of face normals. | |
var dotProd = face.normal.dot( sideFace.normal ); | |
minCurvature = Math.min( minCurvature, ( 1.001 - dotProd ) / 2 ); | |
} | |
curvature = Math.max( curvature, minCurvature ); | |
} | |
// crude approach in attempt to preserve borders | |
// though it seems not to be totally correct | |
var borders = 0; | |
if ( sideFaces.length < 2 ) { | |
// we add some arbitrary cost for borders, | |
// borders += 10; | |
curvature = 1; | |
} | |
var amt = edgelength * curvature + borders; | |
return amt; | |
} | |
function computeEdgeCostAtVertex( v ) { | |
// compute the edge collapse cost for all edges that start | |
// from vertex v. Since we are only interested in reducing | |
// the object by selecting the min cost edge at each step, we | |
// only cache the cost of the least cost edge at this vertex | |
// (in member variable collapse) as well as the value of the | |
// cost (in member variable collapseCost). | |
if ( v.neighbors.length === 0 ) { | |
// collapse if no neighbors. | |
v.collapseNeighbor = null; | |
v.collapseCost = - 0.01; | |
return; | |
} | |
v.collapseCost = 100000; | |
v.collapseNeighbor = null; | |
// search all neighboring edges for "least cost" edge | |
for ( var i = 0; i < v.neighbors.length; i ++ ) { | |
var collapseCost = computeEdgeCollapseCost( v, v.neighbors[ i ] ); | |
if ( ! v.collapseNeighbor ) { | |
v.collapseNeighbor = v.neighbors[ i ]; | |
v.collapseCost = collapseCost; | |
v.minCost = collapseCost; | |
v.totalCost = 0; | |
v.costCount = 0; | |
} | |
v.costCount ++; | |
v.totalCost += collapseCost; | |
if ( collapseCost < v.minCost ) { | |
v.collapseNeighbor = v.neighbors[ i ]; | |
v.minCost = collapseCost; | |
} | |
} | |
// we average the cost of collapsing at this vertex | |
v.collapseCost = v.totalCost / v.costCount; | |
// v.collapseCost = v.minCost; | |
} | |
function removeVertex( v, vertices ) { | |
console.assert( v.faces.length === 0 ); | |
while ( v.neighbors.length ) { | |
var n = v.neighbors.pop(); | |
removeFromArray( n.neighbors, v ); | |
} | |
removeFromArray( vertices, v ); | |
} | |
function removeFace( f, faces ) { | |
removeFromArray( faces, f ); | |
if ( f.v1 ) removeFromArray( f.v1.faces, f ); | |
if ( f.v2 ) removeFromArray( f.v2.faces, f ); | |
if ( f.v3 ) removeFromArray( f.v3.faces, f ); | |
// TODO optimize this! | |
var vs = [ f.v1, f.v2, f.v3 ]; | |
var v1, v2; | |
for ( var i = 0; i < 3; i ++ ) { | |
v1 = vs[ i ]; | |
v2 = vs[ ( i + 1 ) % 3 ]; | |
if ( ! v1 || ! v2 ) continue; | |
v1.removeIfNonNeighbor( v2 ); | |
v2.removeIfNonNeighbor( v1 ); | |
} | |
} | |
function collapse( vertices, faces, u, v ) { // u and v are pointers to vertices of an edge | |
// Collapse the edge uv by moving vertex u onto v | |
if ( ! v ) { | |
// u is a vertex all by itself so just delete it.. | |
removeVertex( u, vertices ); | |
return; | |
} | |
var i; | |
var tmpVertices = []; | |
for ( i = 0; i < u.neighbors.length; i ++ ) { | |
tmpVertices.push( u.neighbors[ i ] ); | |
} | |
// delete triangles on edge uv: | |
for ( i = u.faces.length - 1; i >= 0; i -- ) { | |
if ( u.faces[ i ].hasVertex( v ) ) { | |
removeFace( u.faces[ i ], faces ); | |
} | |
} | |
// update remaining triangles to have v instead of u | |
for ( i = u.faces.length - 1; i >= 0; i -- ) { | |
u.faces[ i ].replaceVertex( u, v ); | |
} | |
removeVertex( u, vertices ); | |
// recompute the edge collapse costs in neighborhood | |
for ( i = 0; i < tmpVertices.length; i ++ ) { | |
computeEdgeCostAtVertex( tmpVertices[ i ] ); | |
} | |
} | |
function minimumCostEdge( vertices ) { | |
// O(n * n) approach. TODO optimize this | |
var least = vertices[ 0 ]; | |
for ( var i = 0; i < vertices.length; i ++ ) { | |
if ( vertices[ i ].collapseCost < least.collapseCost ) { | |
least = vertices[ i ]; | |
} | |
} | |
return least; | |
} | |
// we use a triangle class to represent structure of face slightly differently | |
function Triangle( v1, v2, v3, a, b, c ) { | |
this.a = a; | |
this.b = b; | |
this.c = c; | |
this.v1 = v1; | |
this.v2 = v2; | |
this.v3 = v3; | |
this.normal = new THREE.Vector3(); | |
this.computeNormal(); | |
v1.faces.push( this ); | |
v1.addUniqueNeighbor( v2 ); | |
v1.addUniqueNeighbor( v3 ); | |
v2.faces.push( this ); | |
v2.addUniqueNeighbor( v1 ); | |
v2.addUniqueNeighbor( v3 ); | |
v3.faces.push( this ); | |
v3.addUniqueNeighbor( v1 ); | |
v3.addUniqueNeighbor( v2 ); | |
} | |
Triangle.prototype.computeNormal = function () { | |
var vA = this.v1.position; | |
var vB = this.v2.position; | |
var vC = this.v3.position; | |
cb.subVectors( vC, vB ); | |
ab.subVectors( vA, vB ); | |
cb.cross( ab ).normalize(); | |
this.normal.copy( cb ); | |
}; | |
Triangle.prototype.hasVertex = function ( v ) { | |
return v === this.v1 || v === this.v2 || v === this.v3; | |
}; | |
Triangle.prototype.replaceVertex = function ( oldv, newv ) { | |
if ( oldv === this.v1 ) this.v1 = newv; | |
else if ( oldv === this.v2 ) this.v2 = newv; | |
else if ( oldv === this.v3 ) this.v3 = newv; | |
removeFromArray( oldv.faces, this ); | |
newv.faces.push( this ); | |
oldv.removeIfNonNeighbor( this.v1 ); | |
this.v1.removeIfNonNeighbor( oldv ); | |
oldv.removeIfNonNeighbor( this.v2 ); | |
this.v2.removeIfNonNeighbor( oldv ); | |
oldv.removeIfNonNeighbor( this.v3 ); | |
this.v3.removeIfNonNeighbor( oldv ); | |
this.v1.addUniqueNeighbor( this.v2 ); | |
this.v1.addUniqueNeighbor( this.v3 ); | |
this.v2.addUniqueNeighbor( this.v1 ); | |
this.v2.addUniqueNeighbor( this.v3 ); | |
this.v3.addUniqueNeighbor( this.v1 ); | |
this.v3.addUniqueNeighbor( this.v2 ); | |
this.computeNormal(); | |
}; | |
function Vertex( v, id ) { | |
this.position = v; | |
this.id = id; // old index id | |
this.faces = []; // faces vertex is connected | |
this.neighbors = []; // neighbouring vertices aka "adjacentVertices" | |
// these will be computed in computeEdgeCostAtVertex() | |
this.collapseCost = 0; // cost of collapsing this vertex, the less the better. aka objdist | |
this.collapseNeighbor = null; // best candinate for collapsing | |
} | |
Vertex.prototype.addUniqueNeighbor = function ( vertex ) { | |
pushIfUnique( this.neighbors, vertex ); | |
}; | |
Vertex.prototype.removeIfNonNeighbor = function ( n ) { | |
var neighbors = this.neighbors; | |
var faces = this.faces; | |
var offset = neighbors.indexOf( n ); | |
if ( offset === - 1 ) return; | |
for ( var i = 0; i < faces.length; i ++ ) { | |
if ( faces[ i ].hasVertex( n ) ) return; | |
} | |
neighbors.splice( offset, 1 ); | |
}; | |
THREE.SimplifyModifier.prototype.modify = function ( geometry, count ) { | |
if ( geometry.isBufferGeometry ) { | |
geometry = new THREE.Geometry().fromBufferGeometry( geometry ); | |
} | |
geometry.mergeVertices(); | |
var oldVertices = geometry.vertices; // Three Position | |
var oldFaces = geometry.faces; // Three Face | |
// conversion | |
var vertices = []; | |
var faces = []; | |
var i, il; | |
// | |
// put data of original geometry in different data structures | |
// | |
// add vertices | |
for ( i = 0, il = oldVertices.length; i < il; i ++ ) { | |
var vertex = new Vertex( oldVertices[ i ], i ); | |
vertices.push( vertex ); | |
} | |
// add faces | |
for ( i = 0, il = oldFaces.length; i < il; i ++ ) { | |
var face = oldFaces[ i ]; | |
var a = face.a; | |
var b = face.b; | |
var c = face.c; | |
var triangle = new Triangle( vertices[ a ], vertices[ b ], vertices[ c ], a, b, c ); | |
faces.push( triangle ); | |
} | |
// compute all edge collapse costs | |
for ( i = 0, il = vertices.length; i < il; i ++ ) { | |
computeEdgeCostAtVertex( vertices[ i ] ); | |
} | |
var nextVertex; | |
var z = count; | |
while ( z -- ) { | |
nextVertex = minimumCostEdge( vertices ); | |
if ( ! nextVertex ) { | |
console.log( 'THREE.SimplifyModifier: No next vertex' ); | |
break; | |
} | |
collapse( vertices, faces, nextVertex, nextVertex.collapseNeighbor ); | |
} | |
// | |
var simplifiedGeometry = new THREE.BufferGeometry(); | |
var position = []; | |
var index = []; | |
// | |
for ( i = 0; i < vertices.length; i ++ ) { | |
var vertex = vertices[ i ].position; | |
position.push( vertex.x, vertex.y, vertex.z ); | |
} | |
// | |
for ( i = 0; i < faces.length; i ++ ) { | |
var face = faces[ i ]; | |
var a = vertices.indexOf( face.v1 ); | |
var b = vertices.indexOf( face.v2 ); | |
var c = vertices.indexOf( face.v3 ); | |
index.push( a, b, c ); | |
} | |
// | |
simplifiedGeometry.addAttribute( 'position', new THREE.Float32BufferAttribute( position, 3 ) ); | |
simplifiedGeometry.setIndex( index ); | |
return simplifiedGeometry; | |
}; | |
} )(); | |