Spaces:
Running
Running
/* | |
* $Id: rawinflate.js,v 0.3 2013/04/09 14:25:38 dankogai Exp dankogai $ | |
* | |
* GNU General Public License, version 2 (GPL-2.0) | |
* http://opensource.org/licenses/GPL-2.0 | |
* original: | |
* http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt | |
*/ | |
; | |
SEA3D.Deflate = function () { | |
/* Copyright (C) 1999 Masanao Izumo <[email protected]> | |
* Version: 1.0.0.1 | |
* LastModified: Dec 25 1999 | |
*/ | |
/* Interface: | |
* data = zip_inflate(src); | |
*/ | |
/* constant parameters */ | |
var zip_WSIZE = 32768; // Sliding Window size | |
var zip_STORED_BLOCK = 0; | |
var zip_STATIC_TREES = 1; | |
var zip_DYN_TREES = 2; | |
/* for inflate */ | |
var zip_lbits = 9; // bits in base literal/length lookup table | |
var zip_dbits = 6; // bits in base distance lookup table | |
var zip_INBUFSIZ = 32768; // Input buffer size | |
var zip_INBUF_EXTRA = 64; // Extra buffer | |
/* variables (inflate) */ | |
var zip_slide; | |
var zip_wp; // current position in slide | |
var zip_fixed_tl = null; // inflate static | |
var zip_fixed_td; // inflate static | |
var zip_fixed_bl, fixed_bd, zip_fixed_bd; // inflate static | |
var zip_bit_buf; // bit buffer | |
var zip_bit_len; // bits in bit buffer | |
var zip_method; | |
var zip_eof; | |
var zip_copy_leng; | |
var zip_copy_dist; | |
var zip_tl, zip_td; // literal/length and distance decoder tables | |
var zip_bl, zip_bd; // number of bits decoded by tl and td | |
var zip_inflate_data; | |
var zip_inflate_pos; | |
/* constant tables (inflate) */ | |
var zip_MASK_BITS = new Array( | |
0x0000, | |
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, | |
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff ); | |
// Tables for deflate from PKZIP's appnote.txt. | |
var zip_cplens = new Array( // Copy lengths for literal codes 257..285 | |
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0 ); | |
/* note: see note #13 above about the 258 in this list. */ | |
var zip_cplext = new Array( // Extra bits for literal codes 257..285 | |
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99 ); // 99==invalid | |
var zip_cpdist = new Array( // Copy offsets for distance codes 0..29 | |
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |
8193, 12289, 16385, 24577 ); | |
var zip_cpdext = new Array( // Extra bits for distance codes | |
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |
12, 12, 13, 13 ); | |
var zip_border = new Array( // Order of the bit length code lengths | |
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ); | |
/* objects (inflate) */ | |
var zip_HuftList = function () { | |
this.next = null; | |
this.list = null; | |
} | |
var zip_HuftNode = function () { | |
this.e = 0; // number of extra bits or operation | |
this.b = 0; // number of bits in this code or subcode | |
// union | |
this.n = 0; // literal, length base, or distance base | |
this.t = null; // (zip_HuftNode) pointer to next level of table | |
} | |
var zip_HuftBuild = function ( b, // code lengths in bits (all assumed <= BMAX) | |
n, // number of codes (assumed <= N_MAX) | |
s, // number of simple-valued codes (0..s-1) | |
d, // list of base values for non-simple codes | |
e, // list of extra bits for non-simple codes | |
mm // maximum lookup bits | |
) { | |
this.BMAX = 16; // maximum bit length of any code | |
this.N_MAX = 288; // maximum number of codes in any set | |
this.status = 0; // 0: success, 1: incomplete table, 2: bad input | |
this.root = null; // (zip_HuftList) starting table | |
this.m = 0; // maximum lookup bits, returns actual | |
/* Given a list of code lengths and a maximum table size, make a set of | |
tables to decode that set of codes. Return zero on success, one if | |
the given code set is incomplete (the tables are still built in this | |
case), two if the input is invalid (all zero length codes or an | |
oversubscribed set of lengths), and three if not enough memory. | |
The code with value 256 is special, and the tables are constructed | |
so that no bits beyond that code are fetched when that code is | |
decoded. */ | |
{ | |
var a; // counter for codes of length k | |
var c = new Array( this.BMAX + 1 ); // bit length count table | |
var el; // length of EOB code (value 256) | |
var f; // i repeats in table every f entries | |
var g; // maximum code length | |
var h; // table level | |
var i; // counter, current code | |
var j; // counter | |
var k; // number of bits in current code | |
var lx = new Array( this.BMAX + 1 ); // stack of bits per table | |
var p; // pointer into c[], b[], or v[] | |
var pidx; // index of p | |
var q; // (zip_HuftNode) points to current table | |
var r = new zip_HuftNode(); // table entry for structure assignment | |
var u = new Array( this.BMAX ); // zip_HuftNode[BMAX][] table stack | |
var v = new Array( this.N_MAX ); // values in order of bit length | |
var w; | |
var x = new Array( this.BMAX + 1 );// bit offsets, then code stack | |
var xp; // pointer into x or c | |
var y; // number of dummy codes added | |
var z; // number of entries in current table | |
var o; | |
var tail; // (zip_HuftList) | |
tail = this.root = null; | |
for ( i = 0; i < c.length; i ++ ) | |
c[ i ] = 0; | |
for ( i = 0; i < lx.length; i ++ ) | |
lx[ i ] = 0; | |
for ( i = 0; i < u.length; i ++ ) | |
u[ i ] = null; | |
for ( i = 0; i < v.length; i ++ ) | |
v[ i ] = 0; | |
for ( i = 0; i < x.length; i ++ ) | |
x[ i ] = 0; | |
// Generate counts for each bit length | |
el = n > 256 ? b[ 256 ] : this.BMAX; // set length of EOB code, if any | |
p = b; pidx = 0; | |
i = n; | |
do { | |
c[ p[ pidx ]] ++; // assume all entries <= BMAX | |
pidx ++; | |
} while ( -- i > 0 ); | |
if ( c[ 0 ] == n ) { | |
// null input--all zero length codes | |
this.root = null; | |
this.m = 0; | |
this.status = 0; | |
return; | |
} | |
// Find minimum and maximum length, bound *m by those | |
for ( j = 1; j <= this.BMAX; j ++ ) | |
if ( c[ j ] != 0 ) | |
break; | |
k = j; // minimum code length | |
if ( mm < j ) | |
mm = j; | |
for ( i = this.BMAX; i != 0; i -- ) | |
if ( c[ i ] != 0 ) | |
break; | |
g = i; // maximum code length | |
if ( mm > i ) | |
mm = i; | |
// Adjust last length count to fill out codes, if needed | |
for ( y = 1 << j; j < i; j ++, y <<= 1 ) | |
if ( ( y -= c[ j ] ) < 0 ) { | |
this.status = 2; // bad input: more codes than bits | |
this.m = mm; | |
return; | |
} | |
if ( ( y -= c[ i ] ) < 0 ) { | |
this.status = 2; | |
this.m = mm; | |
return; | |
} | |
c[ i ] += y; | |
// Generate starting offsets into the value table for each length | |
x[ 1 ] = j = 0; | |
p = c; | |
pidx = 1; | |
xp = 2; | |
while ( -- i > 0 ) // note that i == g from above | |
x[ xp ++ ] = ( j += p[ pidx ++ ] ); | |
// Make a table of values in order of bit lengths | |
p = b; pidx = 0; | |
i = 0; | |
do { | |
if ( ( j = p[ pidx ++ ] ) != 0 ) | |
v[ x[ j ] ++ ] = i; | |
} while ( ++ i < n ); | |
n = x[ g ]; // set n to length of v | |
// Generate the Huffman codes and for each, make the table entries | |
x[ 0 ] = i = 0; // first Huffman code is zero | |
p = v; pidx = 0; // grab values in bit order | |
h = - 1; // no tables yet--level -1 | |
w = lx[ 0 ] = 0; // no bits decoded yet | |
q = null; // ditto | |
z = 0; // ditto | |
// go through the bit lengths (k already is bits in shortest code) | |
for ( ; k <= g; k ++ ) { | |
a = c[ k ]; | |
while ( a -- > 0 ) { | |
// here i is the Huffman code of length k bits for value p[pidx] | |
// make tables up to required level | |
while ( k > w + lx[ 1 + h ] ) { | |
w += lx[ 1 + h ]; // add bits already decoded | |
h ++; | |
// compute minimum size table less than or equal to *m bits | |
z = ( z = g - w ) > mm ? mm : z; // upper limit | |
if ( ( f = 1 << ( j = k - w ) ) > a + 1 ) { | |
// try a k-w bit table | |
// too few codes for k-w bit table | |
f -= a + 1; // deduct codes from patterns left | |
xp = k; | |
while ( ++ j < z ) { | |
// try smaller tables up to z bits | |
if ( ( f <<= 1 ) <= c[ ++ xp ] ) | |
break; // enough codes to use up j bits | |
f -= c[ xp ]; // else deduct codes from patterns | |
} | |
} | |
if ( w + j > el && w < el ) | |
j = el - w; // make EOB code end at table | |
z = 1 << j; // table entries for j-bit table | |
lx[ 1 + h ] = j; // set table size in stack | |
// allocate and link in new table | |
q = new Array( z ); | |
for ( o = 0; o < z; o ++ ) { | |
q[ o ] = new zip_HuftNode(); | |
} | |
if ( tail == null ) | |
tail = this.root = new zip_HuftList(); | |
else | |
tail = tail.next = new zip_HuftList(); | |
tail.next = null; | |
tail.list = q; | |
u[ h ] = q; // table starts after link | |
/* connect to last table, if there is one */ | |
if ( h > 0 ) { | |
x[ h ] = i; // save pattern for backing up | |
r.b = lx[ h ]; // bits to dump before this table | |
r.e = 16 + j; // bits in this table | |
r.t = q; // pointer to this table | |
j = ( i & ( ( 1 << w ) - 1 ) ) >> ( w - lx[ h ] ); | |
u[ h - 1 ][ j ].e = r.e; | |
u[ h - 1 ][ j ].b = r.b; | |
u[ h - 1 ][ j ].n = r.n; | |
u[ h - 1 ][ j ].t = r.t; | |
} | |
} | |
// set up table entry in r | |
r.b = k - w; | |
if ( pidx >= n ) | |
r.e = 99; // out of values--invalid code | |
else if ( p[ pidx ] < s ) { | |
r.e = ( p[ pidx ] < 256 ? 16 : 15 ); // 256 is end-of-block code | |
r.n = p[ pidx ++ ]; // simple code is just the value | |
} else { | |
r.e = e[ p[ pidx ] - s ]; // non-simple--look up in lists | |
r.n = d[ p[ pidx ++ ] - s ]; | |
} | |
// fill code-like entries with r // | |
f = 1 << ( k - w ); | |
for ( j = i >> w; j < z; j += f ) { | |
q[ j ].e = r.e; | |
q[ j ].b = r.b; | |
q[ j ].n = r.n; | |
q[ j ].t = r.t; | |
} | |
// backwards increment the k-bit code i | |
for ( j = 1 << ( k - 1 ); ( i & j ) != 0; j >>= 1 ) | |
i ^= j; | |
i ^= j; | |
// backup over finished tables | |
while ( ( i & ( ( 1 << w ) - 1 ) ) != x[ h ] ) { | |
w -= lx[ h ]; // don't need to update q | |
h --; | |
} | |
} | |
} | |
/* return actual size of base table */ | |
this.m = lx[ 1 ]; | |
/* Return true (1) if we were given an incomplete table */ | |
this.status = ( ( y != 0 && g != 1 ) ? 1 : 0 ); | |
} /* end of constructor */ | |
} | |
/* routines (inflate) */ | |
var zip_GET_BYTE = function () { | |
if ( zip_inflate_data.length == zip_inflate_pos ) | |
return - 1; | |
return zip_inflate_data[ zip_inflate_pos ++ ]; | |
} | |
var zip_NEEDBITS = function ( n ) { | |
while ( zip_bit_len < n ) { | |
zip_bit_buf |= zip_GET_BYTE() << zip_bit_len; | |
zip_bit_len += 8; | |
} | |
} | |
var zip_GETBITS = function ( n ) { | |
return zip_bit_buf & zip_MASK_BITS[ n ]; | |
} | |
var zip_DUMPBITS = function ( n ) { | |
zip_bit_buf >>= n; | |
zip_bit_len -= n; | |
} | |
var zip_inflate_codes = function ( buff, off, size ) { | |
/* inflate (decompress) the codes in a deflated (compressed) block. | |
Return an error code or zero if it all goes ok. */ | |
var e; // table entry flag/number of extra bits | |
var t; // (zip_HuftNode) pointer to table entry | |
var n; | |
if ( size == 0 ) | |
return 0; | |
// inflate the coded data | |
n = 0; | |
for ( ;; ) { | |
// do until end of block | |
zip_NEEDBITS( zip_bl ); | |
t = zip_tl.list[ zip_GETBITS( zip_bl ) ]; | |
e = t.e; | |
while ( e > 16 ) { | |
if ( e == 99 ) | |
return - 1; | |
zip_DUMPBITS( t.b ); | |
e -= 16; | |
zip_NEEDBITS( e ); | |
t = t.t[ zip_GETBITS( e ) ]; | |
e = t.e; | |
} | |
zip_DUMPBITS( t.b ); | |
if ( e == 16 ) { | |
// then it's a literal | |
zip_wp &= zip_WSIZE - 1; | |
buff[ off + n ++ ] = zip_slide[ zip_wp ++ ] = t.n; | |
if ( n == size ) | |
return size; | |
continue; | |
} | |
// exit if end of block | |
if ( e == 15 ) | |
break; | |
// it's an EOB or a length | |
// get length of block to copy | |
zip_NEEDBITS( e ); | |
zip_copy_leng = t.n + zip_GETBITS( e ); | |
zip_DUMPBITS( e ); | |
// decode distance of block to copy | |
zip_NEEDBITS( zip_bd ); | |
t = zip_td.list[ zip_GETBITS( zip_bd ) ]; | |
e = t.e; | |
while ( e > 16 ) { | |
if ( e == 99 ) | |
return - 1; | |
zip_DUMPBITS( t.b ); | |
e -= 16; | |
zip_NEEDBITS( e ); | |
t = t.t[ zip_GETBITS( e ) ]; | |
e = t.e; | |
} | |
zip_DUMPBITS( t.b ); | |
zip_NEEDBITS( e ); | |
zip_copy_dist = zip_wp - t.n - zip_GETBITS( e ); | |
zip_DUMPBITS( e ); | |
// do the copy | |
while ( zip_copy_leng > 0 && n < size ) { | |
zip_copy_leng --; | |
zip_copy_dist &= zip_WSIZE - 1; | |
zip_wp &= zip_WSIZE - 1; | |
buff[ off + n ++ ] = zip_slide[ zip_wp ++ ] | |
= zip_slide[ zip_copy_dist ++ ]; | |
} | |
if ( n == size ) | |
return size; | |
} | |
zip_method = - 1; // done | |
return n; | |
} | |
var zip_inflate_stored = function ( buff, off, size ) { | |
/* "decompress" an inflated type 0 (stored) block. */ | |
var n; | |
// go to byte boundary | |
n = zip_bit_len & 7; | |
zip_DUMPBITS( n ); | |
// get the length and its complement | |
zip_NEEDBITS( 16 ); | |
n = zip_GETBITS( 16 ); | |
zip_DUMPBITS( 16 ); | |
zip_NEEDBITS( 16 ); | |
if ( n != ( ( ~ zip_bit_buf ) & 0xffff ) ) | |
return - 1; // error in compressed data | |
zip_DUMPBITS( 16 ); | |
// read and output the compressed data | |
zip_copy_leng = n; | |
n = 0; | |
while ( zip_copy_leng > 0 && n < size ) { | |
zip_copy_leng --; | |
zip_wp &= zip_WSIZE - 1; | |
zip_NEEDBITS( 8 ); | |
buff[ off + n ++ ] = zip_slide[ zip_wp ++ ] = | |
zip_GETBITS( 8 ); | |
zip_DUMPBITS( 8 ); | |
} | |
if ( zip_copy_leng == 0 ) | |
zip_method = - 1; // done | |
return n; | |
} | |
var zip_inflate_fixed = function ( buff, off, size ) { | |
/* decompress an inflated type 1 (fixed Huffman codes) block. We should | |
either replace this with a custom decoder, or at least precompute the | |
Huffman tables. */ | |
// if first time, set up tables for fixed blocks | |
if ( zip_fixed_tl == null ) { | |
var i; // temporary variable | |
var l = new Array( 288 ); // length list for huft_build | |
var h; // zip_HuftBuild | |
// literal table | |
for ( i = 0; i < 144; i ++ ) | |
l[ i ] = 8; | |
for ( ; i < 256; i ++ ) | |
l[ i ] = 9; | |
for ( ; i < 280; i ++ ) | |
l[ i ] = 7; | |
for ( ; i < 288; i ++ ) // make a complete, but wrong code set | |
l[ i ] = 8; | |
zip_fixed_bl = 7; | |
h = new zip_HuftBuild( l, 288, 257, zip_cplens, zip_cplext, | |
zip_fixed_bl ); | |
if ( h.status != 0 ) { | |
alert( "HufBuild error: " + h.status ); | |
return - 1; | |
} | |
zip_fixed_tl = h.root; | |
zip_fixed_bl = h.m; | |
// distance table | |
for ( i = 0; i < 30; i ++ ) // make an incomplete code set | |
l[ i ] = 5; | |
zip_fixed_bd = 5; | |
h = new zip_HuftBuild( l, 30, 0, zip_cpdist, zip_cpdext, zip_fixed_bd ); | |
if ( h.status > 1 ) { | |
zip_fixed_tl = null; | |
alert( "HufBuild error: " + h.status ); | |
return - 1; | |
} | |
zip_fixed_td = h.root; | |
zip_fixed_bd = h.m; | |
} | |
zip_tl = zip_fixed_tl; | |
zip_td = zip_fixed_td; | |
zip_bl = zip_fixed_bl; | |
zip_bd = zip_fixed_bd; | |
return zip_inflate_codes( buff, off, size ); | |
} | |
var zip_inflate_dynamic = function ( buff, off, size ) { | |
// decompress an inflated type 2 (dynamic Huffman codes) block. | |
var i; // temporary variables | |
var j; | |
var l; // last length | |
var n; // number of lengths to get | |
var t; // (zip_HuftNode) literal/length code table | |
var nb; // number of bit length codes | |
var nl; // number of literal/length codes | |
var nd; // number of distance codes | |
var ll = new Array( 286 + 30 ); // literal/length and distance code lengths | |
var h; // (zip_HuftBuild) | |
for ( i = 0; i < ll.length; i ++ ) | |
ll[ i ] = 0; | |
// read in table lengths | |
zip_NEEDBITS( 5 ); | |
nl = 257 + zip_GETBITS( 5 ); // number of literal/length codes | |
zip_DUMPBITS( 5 ); | |
zip_NEEDBITS( 5 ); | |
nd = 1 + zip_GETBITS( 5 ); // number of distance codes | |
zip_DUMPBITS( 5 ); | |
zip_NEEDBITS( 4 ); | |
nb = 4 + zip_GETBITS( 4 ); // number of bit length codes | |
zip_DUMPBITS( 4 ); | |
if ( nl > 286 || nd > 30 ) | |
return - 1; // bad lengths | |
// read in bit-length-code lengths | |
for ( j = 0; j < nb; j ++ ) | |
{ | |
zip_NEEDBITS( 3 ); | |
ll[ zip_border[ j ]] = zip_GETBITS( 3 ); | |
zip_DUMPBITS( 3 ); | |
} | |
for ( ; j < 19; j ++ ) | |
ll[ zip_border[ j ]] = 0; | |
// build decoding table for trees--single level, 7 bit lookup | |
zip_bl = 7; | |
h = new zip_HuftBuild( ll, 19, 19, null, null, zip_bl ); | |
if ( h.status != 0 ) | |
return - 1; // incomplete code set | |
zip_tl = h.root; | |
zip_bl = h.m; | |
// read in literal and distance code lengths | |
n = nl + nd; | |
i = l = 0; | |
while ( i < n ) { | |
zip_NEEDBITS( zip_bl ); | |
t = zip_tl.list[ zip_GETBITS( zip_bl ) ]; | |
j = t.b; | |
zip_DUMPBITS( j ); | |
j = t.n; | |
if ( j < 16 ) // length of code in bits (0..15) | |
ll[ i ++ ] = l = j; // save last length in l | |
else if ( j == 16 ) { | |
// repeat last length 3 to 6 times | |
zip_NEEDBITS( 2 ); | |
j = 3 + zip_GETBITS( 2 ); | |
zip_DUMPBITS( 2 ); | |
if ( i + j > n ) | |
return - 1; | |
while ( j -- > 0 ) | |
ll[ i ++ ] = l; | |
} else if ( j == 17 ) { | |
// 3 to 10 zero length codes | |
zip_NEEDBITS( 3 ); | |
j = 3 + zip_GETBITS( 3 ); | |
zip_DUMPBITS( 3 ); | |
if ( i + j > n ) | |
return - 1; | |
while ( j -- > 0 ) | |
ll[ i ++ ] = 0; | |
l = 0; | |
} else { | |
// j == 18: 11 to 138 zero length codes | |
zip_NEEDBITS( 7 ); | |
j = 11 + zip_GETBITS( 7 ); | |
zip_DUMPBITS( 7 ); | |
if ( i + j > n ) | |
return - 1; | |
while ( j -- > 0 ) | |
ll[ i ++ ] = 0; | |
l = 0; | |
} | |
} | |
// build the decoding tables for literal/length and distance codes | |
zip_bl = zip_lbits; | |
h = new zip_HuftBuild( ll, nl, 257, zip_cplens, zip_cplext, zip_bl ); | |
if ( zip_bl == 0 ) // no literals or lengths | |
h.status = 1; | |
if ( h.status != 0 ) { | |
/*if(h.status == 1) | |
;// **incomplete literal tree** */ | |
return - 1; // incomplete code set | |
} | |
zip_tl = h.root; | |
zip_bl = h.m; | |
for ( i = 0; i < nd; i ++ ) | |
ll[ i ] = ll[ i + nl ]; | |
zip_bd = zip_dbits; | |
h = new zip_HuftBuild( ll, nd, 0, zip_cpdist, zip_cpdext, zip_bd ); | |
zip_td = h.root; | |
zip_bd = h.m; | |
if ( zip_bd == 0 && nl > 257 ) { | |
// lengths but no distances | |
// **incomplete distance tree** | |
return - 1; | |
} | |
/*if(h.status == 1) { | |
;// **incomplete distance tree** | |
}*/ | |
if ( h.status != 0 ) | |
return - 1; | |
// decompress until an end-of-block code | |
return zip_inflate_codes( buff, off, size ); | |
} | |
var zip_inflate_start = function () { | |
var i; | |
if ( zip_slide == null ) | |
zip_slide = new Array( 2 * zip_WSIZE ); | |
zip_wp = 0; | |
zip_bit_buf = 0; | |
zip_bit_len = 0; | |
zip_method = - 1; | |
zip_eof = false; | |
zip_copy_leng = zip_copy_dist = 0; | |
zip_tl = null; | |
} | |
var zip_inflate_internal = function ( buff, off, size ) { | |
// decompress an inflated entry | |
var n, i; | |
n = 0; | |
while ( n < size ) { | |
if ( zip_eof && zip_method == - 1 ) | |
return n; | |
if ( zip_copy_leng > 0 ) { | |
if ( zip_method != zip_STORED_BLOCK ) { | |
// STATIC_TREES or DYN_TREES | |
while ( zip_copy_leng > 0 && n < size ) { | |
zip_copy_leng --; | |
zip_copy_dist &= zip_WSIZE - 1; | |
zip_wp &= zip_WSIZE - 1; | |
buff[ off + n ++ ] = zip_slide[ zip_wp ++ ] = | |
zip_slide[ zip_copy_dist ++ ]; | |
} | |
} else { | |
while ( zip_copy_leng > 0 && n < size ) { | |
zip_copy_leng --; | |
zip_wp &= zip_WSIZE - 1; | |
zip_NEEDBITS( 8 ); | |
buff[ off + n ++ ] = zip_slide[ zip_wp ++ ] = zip_GETBITS( 8 ); | |
zip_DUMPBITS( 8 ); | |
} | |
if ( zip_copy_leng == 0 ) | |
zip_method = - 1; // done | |
} | |
if ( n == size ) | |
return n; | |
} | |
if ( zip_method == - 1 ) { | |
if ( zip_eof ) | |
break; | |
// read in last block bit | |
zip_NEEDBITS( 1 ); | |
if ( zip_GETBITS( 1 ) != 0 ) | |
zip_eof = true; | |
zip_DUMPBITS( 1 ); | |
// read in block type | |
zip_NEEDBITS( 2 ); | |
zip_method = zip_GETBITS( 2 ); | |
zip_DUMPBITS( 2 ); | |
zip_tl = null; | |
zip_copy_leng = 0; | |
} | |
switch ( zip_method ) { | |
case 0: // zip_STORED_BLOCK | |
i = zip_inflate_stored( buff, off + n, size - n ); | |
break; | |
case 1: // zip_STATIC_TREES | |
if ( zip_tl != null ) | |
i = zip_inflate_codes( buff, off + n, size - n ); | |
else | |
i = zip_inflate_fixed( buff, off + n, size - n ); | |
break; | |
case 2: // zip_DYN_TREES | |
if ( zip_tl != null ) | |
i = zip_inflate_codes( buff, off + n, size - n ); | |
else | |
i = zip_inflate_dynamic( buff, off + n, size - n ); | |
break; | |
default: // error | |
i = - 1; | |
} | |
if ( i == - 1 ) { | |
if ( zip_eof ) | |
return 0; | |
return - 1; | |
} | |
n += i; | |
} | |
return n; | |
} | |
var zip_inflate = function ( data ) { | |
var i, j, pos = 0; | |
zip_inflate_start(); | |
zip_inflate_data = new Uint8Array( data ); | |
zip_inflate_pos = 0; | |
var buff = new Uint8Array( 1024 ); | |
var out = []; | |
while ( ( i = zip_inflate_internal( buff, 0, buff.length ) ) > 0 ) | |
for ( j = 0; j < i; j ++ ) | |
out[ pos ++ ] = buff[ j ]; | |
zip_inflate_data = null; // G.C. | |
return new Uint8Array( out ).buffer; | |
} | |
return { inflate: zip_inflate }; | |
}(); | |
/** | |
* SEA3D Deflate | |
* @author Sunag / http://www.sunag.com.br/ | |
*/ | |
SEA3D.File.DeflateUncompress = function ( data ) { | |
return SEA3D.Deflate.inflate( data ); | |
}; | |
SEA3D.File.setDecompressionEngine( 1, "deflate", SEA3D.File.DeflateUncompress ); | |