julien-c's picture
julien-c HF staff
do not gitignore the builds
6cd9596
raw
history blame
45.8 kB
/**
* @author mrdoob / http://mrdoob.com/
* @author zz85 / http://joshuakoo.com/
* @author yomboprime / https://yombo.org
*/
THREE.SVGLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.SVGLoader.prototype = {
constructor: THREE.SVGLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new THREE.FileLoader( scope.manager );
loader.setPath( scope.path );
loader.load( url, function ( text ) {
onLoad( scope.parse( text ) );
}, onProgress, onError );
},
setPath: function ( value ) {
this.path = value;
return this;
},
parse: function ( text ) {
function parseNode( node, style ) {
if ( node.nodeType !== 1 ) return;
var transform = getNodeTransform( node );
var path = null;
switch ( node.nodeName ) {
case 'svg':
break;
case 'g':
style = parseStyle( node, style );
break;
case 'path':
style = parseStyle( node, style );
if ( node.hasAttribute( 'd' ) ) path = parsePathNode( node, style );
break;
case 'rect':
style = parseStyle( node, style );
path = parseRectNode( node, style );
break;
case 'polygon':
style = parseStyle( node, style );
path = parsePolygonNode( node, style );
break;
case 'polyline':
style = parseStyle( node, style );
path = parsePolylineNode( node, style );
break;
case 'circle':
style = parseStyle( node, style );
path = parseCircleNode( node, style );
break;
case 'ellipse':
style = parseStyle( node, style );
path = parseEllipseNode( node, style );
break;
case 'line':
style = parseStyle( node, style );
path = parseLineNode( node, style );
break;
default:
console.log( node );
}
if ( path ) {
if ( style.fill !== undefined && style.fill !== 'none' ) {
path.color.setStyle( style.fill );
}
transformPath( path, currentTransform );
paths.push( path );
path.userData = { node: node, style: style };
}
var nodes = node.childNodes;
for ( var i = 0; i < nodes.length; i ++ ) {
parseNode( nodes[ i ], style );
}
if ( transform ) {
currentTransform.copy( transformStack.pop() );
}
}
function parsePathNode( node, style ) {
var path = new THREE.ShapePath();
var point = new THREE.Vector2();
var control = new THREE.Vector2();
var firstPoint = new THREE.Vector2();
var isFirstPoint = true;
var doSetFirstPoint = false;
var d = node.getAttribute( 'd' );
// console.log( d );
var commands = d.match( /[a-df-z][^a-df-z]*/ig );
for ( var i = 0, l = commands.length; i < l; i ++ ) {
var command = commands[ i ];
var type = command.charAt( 0 );
var data = command.substr( 1 ).trim();
if ( isFirstPoint === true ) {
doSetFirstPoint = true;
isFirstPoint = false;
}
switch ( type ) {
case 'M':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
if ( j === 0 ) {
path.moveTo( point.x, point.y );
} else {
path.lineTo( point.x, point.y );
}
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'H':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.x = numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'V':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.y = numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'L':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'C':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) {
path.bezierCurveTo(
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ],
numbers[ j + 4 ],
numbers[ j + 5 ]
);
control.x = numbers[ j + 2 ];
control.y = numbers[ j + 3 ];
point.x = numbers[ j + 4 ];
point.y = numbers[ j + 5 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'S':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.bezierCurveTo(
getReflection( point.x, control.x ),
getReflection( point.y, control.y ),
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ]
);
control.x = numbers[ j + 0 ];
control.y = numbers[ j + 1 ];
point.x = numbers[ j + 2 ];
point.y = numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'Q':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.quadraticCurveTo(
numbers[ j + 0 ],
numbers[ j + 1 ],
numbers[ j + 2 ],
numbers[ j + 3 ]
);
control.x = numbers[ j + 0 ];
control.y = numbers[ j + 1 ];
point.x = numbers[ j + 2 ];
point.y = numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'T':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
var rx = getReflection( point.x, control.x );
var ry = getReflection( point.y, control.y );
path.quadraticCurveTo(
rx,
ry,
numbers[ j + 0 ],
numbers[ j + 1 ]
);
control.x = rx;
control.y = ry;
point.x = numbers[ j + 0 ];
point.y = numbers[ j + 1 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'A':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) {
var start = point.clone();
point.x = numbers[ j + 5 ];
point.y = numbers[ j + 6 ];
control.x = point.x;
control.y = point.y;
parseArcCommand(
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
);
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
//
case 'm':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x += numbers[ j + 0 ];
point.y += numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
if ( j === 0 ) {
path.moveTo( point.x, point.y );
} else {
path.lineTo( point.x, point.y );
}
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'h':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.x += numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'v':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j ++ ) {
point.y += numbers[ j ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'l':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
point.x += numbers[ j + 0 ];
point.y += numbers[ j + 1 ];
control.x = point.x;
control.y = point.y;
path.lineTo( point.x, point.y );
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'c':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 6 ) {
path.bezierCurveTo(
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ],
point.x + numbers[ j + 4 ],
point.y + numbers[ j + 5 ]
);
control.x = point.x + numbers[ j + 2 ];
control.y = point.y + numbers[ j + 3 ];
point.x += numbers[ j + 4 ];
point.y += numbers[ j + 5 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 's':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.bezierCurveTo(
getReflection( point.x, control.x ),
getReflection( point.y, control.y ),
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ]
);
control.x = point.x + numbers[ j + 0 ];
control.y = point.y + numbers[ j + 1 ];
point.x += numbers[ j + 2 ];
point.y += numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'q':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 4 ) {
path.quadraticCurveTo(
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ],
point.x + numbers[ j + 2 ],
point.y + numbers[ j + 3 ]
);
control.x = point.x + numbers[ j + 0 ];
control.y = point.y + numbers[ j + 1 ];
point.x += numbers[ j + 2 ];
point.y += numbers[ j + 3 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 't':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 2 ) {
var rx = getReflection( point.x, control.x );
var ry = getReflection( point.y, control.y );
path.quadraticCurveTo(
rx,
ry,
point.x + numbers[ j + 0 ],
point.y + numbers[ j + 1 ]
);
control.x = rx;
control.y = ry;
point.x = point.x + numbers[ j + 0 ];
point.y = point.y + numbers[ j + 1 ];
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
case 'a':
var numbers = parseFloats( data );
for ( var j = 0, jl = numbers.length; j < jl; j += 7 ) {
var start = point.clone();
point.x += numbers[ j + 5 ];
point.y += numbers[ j + 6 ];
control.x = point.x;
control.y = point.y;
parseArcCommand(
path, numbers[ j ], numbers[ j + 1 ], numbers[ j + 2 ], numbers[ j + 3 ], numbers[ j + 4 ], start, point
);
if ( j === 0 && doSetFirstPoint === true ) firstPoint.copy( point );
}
break;
//
case 'Z':
case 'z':
path.currentPath.autoClose = true;
if ( path.currentPath.curves.length > 0 ) {
// Reset point to beginning of Path
point.copy( firstPoint );
path.currentPath.currentPoint.copy( point );
isFirstPoint = true;
}
break;
default:
console.warn( command );
}
// console.log( type, parseFloats( data ), parseFloats( data ).length )
doSetFirstPoint = false;
}
return path;
}
/**
* https://www.w3.org/TR/SVG/implnote.html#ArcImplementationNotes
* https://mortoray.com/2017/02/16/rendering-an-svg-elliptical-arc-as-bezier-curves/ Appendix: Endpoint to center arc conversion
* From
* rx ry x-axis-rotation large-arc-flag sweep-flag x y
* To
* aX, aY, xRadius, yRadius, aStartAngle, aEndAngle, aClockwise, aRotation
*/
function parseArcCommand( path, rx, ry, x_axis_rotation, large_arc_flag, sweep_flag, start, end ) {
x_axis_rotation = x_axis_rotation * Math.PI / 180;
// Ensure radii are positive
rx = Math.abs( rx );
ry = Math.abs( ry );
// Compute (x1′, y1′)
var dx2 = ( start.x - end.x ) / 2.0;
var dy2 = ( start.y - end.y ) / 2.0;
var x1p = Math.cos( x_axis_rotation ) * dx2 + Math.sin( x_axis_rotation ) * dy2;
var y1p = - Math.sin( x_axis_rotation ) * dx2 + Math.cos( x_axis_rotation ) * dy2;
// Compute (cx′, cy′)
var rxs = rx * rx;
var rys = ry * ry;
var x1ps = x1p * x1p;
var y1ps = y1p * y1p;
// Ensure radii are large enough
var cr = x1ps / rxs + y1ps / rys;
if ( cr > 1 ) {
// scale up rx,ry equally so cr == 1
var s = Math.sqrt( cr );
rx = s * rx;
ry = s * ry;
rxs = rx * rx;
rys = ry * ry;
}
var dq = ( rxs * y1ps + rys * x1ps );
var pq = ( rxs * rys - dq ) / dq;
var q = Math.sqrt( Math.max( 0, pq ) );
if ( large_arc_flag === sweep_flag ) q = - q;
var cxp = q * rx * y1p / ry;
var cyp = - q * ry * x1p / rx;
// Step 3: Compute (cx, cy) from (cx′, cy′)
var cx = Math.cos( x_axis_rotation ) * cxp - Math.sin( x_axis_rotation ) * cyp + ( start.x + end.x ) / 2;
var cy = Math.sin( x_axis_rotation ) * cxp + Math.cos( x_axis_rotation ) * cyp + ( start.y + end.y ) / 2;
// Step 4: Compute θ1 and Δθ
var theta = svgAngle( 1, 0, ( x1p - cxp ) / rx, ( y1p - cyp ) / ry );
var delta = svgAngle( ( x1p - cxp ) / rx, ( y1p - cyp ) / ry, ( - x1p - cxp ) / rx, ( - y1p - cyp ) / ry ) % ( Math.PI * 2 );
path.currentPath.absellipse( cx, cy, rx, ry, theta, theta + delta, sweep_flag === 0, x_axis_rotation );
}
function svgAngle( ux, uy, vx, vy ) {
var dot = ux * vx + uy * vy;
var len = Math.sqrt( ux * ux + uy * uy ) * Math.sqrt( vx * vx + vy * vy );
var ang = Math.acos( Math.max( -1, Math.min( 1, dot / len ) ) ); // floating point precision, slightly over values appear
if ( ( ux * vy - uy * vx ) < 0 ) ang = - ang;
return ang;
}
/*
* According to https://www.w3.org/TR/SVG/shapes.html#RectElementRXAttribute
* rounded corner should be rendered to elliptical arc, but bezier curve does the job well enough
*/
function parseRectNode( node, style ) {
var x = parseFloat( node.getAttribute( 'x' ) || 0 );
var y = parseFloat( node.getAttribute( 'y' ) || 0 );
var rx = parseFloat( node.getAttribute( 'rx' ) || 0 );
var ry = parseFloat( node.getAttribute( 'ry' ) || 0 );
var w = parseFloat( node.getAttribute( 'width' ) );
var h = parseFloat( node.getAttribute( 'height' ) );
var path = new THREE.ShapePath();
path.moveTo( x + 2 * rx, y );
path.lineTo( x + w - 2 * rx, y );
if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y, x + w, y, x + w, y + 2 * ry );
path.lineTo( x + w, y + h - 2 * ry );
if ( rx !== 0 || ry !== 0 ) path.bezierCurveTo( x + w, y + h, x + w, y + h, x + w - 2 * rx, y + h );
path.lineTo( x + 2 * rx, y + h );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo( x, y + h, x, y + h, x, y + h - 2 * ry );
}
path.lineTo( x, y + 2 * ry );
if ( rx !== 0 || ry !== 0 ) {
path.bezierCurveTo( x, y, x, y, x + 2 * rx, y );
}
return path;
}
function parsePolygonNode( node, style ) {
function iterator( match, a, b ) {
var x = parseFloat( a );
var y = parseFloat( b );
if ( index === 0 ) {
path.moveTo( x, y );
} else {
path.lineTo( x, y );
}
index ++;
}
var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;
var path = new THREE.ShapePath();
var index = 0;
node.getAttribute( 'points' ).replace(regex, iterator);
path.currentPath.autoClose = true;
return path;
}
function parsePolylineNode( node, style ) {
function iterator( match, a, b ) {
var x = parseFloat( a );
var y = parseFloat( b );
if ( index === 0 ) {
path.moveTo( x, y );
} else {
path.lineTo( x, y );
}
index ++;
}
var regex = /(-?[\d\.?]+)[,|\s](-?[\d\.?]+)/g;
var path = new THREE.ShapePath();
var index = 0;
node.getAttribute( 'points' ).replace(regex, iterator);
path.currentPath.autoClose = false;
return path;
}
function parseCircleNode( node, style ) {
var x = parseFloat( node.getAttribute( 'cx' ) );
var y = parseFloat( node.getAttribute( 'cy' ) );
var r = parseFloat( node.getAttribute( 'r' ) );
var subpath = new THREE.Path();
subpath.absarc( x, y, r, 0, Math.PI * 2 );
var path = new THREE.ShapePath();
path.subPaths.push( subpath );
return path;
}
function parseEllipseNode( node, style ) {
var x = parseFloat( node.getAttribute( 'cx' ) );
var y = parseFloat( node.getAttribute( 'cy' ) );
var rx = parseFloat( node.getAttribute( 'rx' ) );
var ry = parseFloat( node.getAttribute( 'ry' ) );
var subpath = new THREE.Path();
subpath.absellipse( x, y, rx, ry, 0, Math.PI * 2 );
var path = new THREE.ShapePath();
path.subPaths.push( subpath );
return path;
}
function parseLineNode( node, style ) {
var x1 = parseFloat( node.getAttribute( 'x1' ) );
var y1 = parseFloat( node.getAttribute( 'y1' ) );
var x2 = parseFloat( node.getAttribute( 'x2' ) );
var y2 = parseFloat( node.getAttribute( 'y2' ) );
var path = new THREE.ShapePath();
path.moveTo( x1, y1 );
path.lineTo( x2, y2 );
path.currentPath.autoClose = false;
return path;
}
//
function parseStyle( node, style ) {
style = Object.assign( {}, style ); // clone style
function addStyle( svgName, jsName, adjustFunction ) {
if ( adjustFunction === undefined ) adjustFunction = function copy( v ) { return v; };
if ( node.hasAttribute( svgName ) ) style[ jsName ] = adjustFunction( node.getAttribute( svgName ) );
if ( node.style[ svgName ] !== '' ) style[ jsName ] = adjustFunction( node.style[ svgName ] );
}
function clamp( v ) {
return Math.max( 0, Math.min( 1, v ) );
}
function positive( v ) {
return Math.max( 0, v );
}
addStyle( 'fill', 'fill' );
addStyle( 'fill-opacity', 'fillOpacity', clamp );
addStyle( 'stroke', 'stroke' );
addStyle( 'stroke-opacity', 'strokeOpacity', clamp );
addStyle( 'stroke-width', 'strokeWidth', positive );
addStyle( 'stroke-linejoin', 'strokeLineJoin' );
addStyle( 'stroke-linecap', 'strokeLineCap' );
addStyle( 'stroke-miterlimit', 'strokeMiterLimit', positive );
return style;
}
// http://www.w3.org/TR/SVG11/implnote.html#PathElementImplementationNotes
function getReflection( a, b ) {
return a - ( b - a );
}
function parseFloats( string ) {
var array = string.split( /[\s,]+|(?=\s?[+\-])/ );
for ( var i = 0; i < array.length; i ++ ) {
var number = array[ i ];
// Handle values like 48.6037.7.8
// TODO Find a regex for this
if ( number.indexOf( '.' ) !== number.lastIndexOf( '.' ) ) {
var split = number.split( '.' );
for ( var s = 2; s < split.length; s ++ ) {
array.splice( i + s - 1, 0, '0.' + split[ s ] );
}
}
array[ i ] = parseFloat( number );
}
return array;
}
function getNodeTransform( node ) {
if ( ! node.hasAttribute( 'transform' ) ) {
return null;
}
var transform = parseNodeTransform( node );
if ( transform ) {
if ( transformStack.length > 0 ) {
transform.premultiply( transformStack[ transformStack.length - 1 ] );
}
currentTransform.copy( transform );
transformStack.push( transform );
}
return transform;
}
function parseNodeTransform( node ) {
var transform = new THREE.Matrix3();
var currentTransform = tempTransform0;
var transformsTexts = node.getAttribute( 'transform' ).split( ' ' );
for ( var tIndex = transformsTexts.length - 1; tIndex >= 0; tIndex -- ) {
var transformText = transformsTexts[ tIndex ];
var openParPos = transformText.indexOf( "(" );
var closeParPos = transformText.indexOf( ")" );
if ( openParPos > 0 && openParPos < closeParPos ) {
var transformType = transformText.substr( 0, openParPos );
var array = parseFloats( transformText.substr( openParPos + 1, closeParPos - openParPos - 1 ) );
currentTransform.identity();
switch ( transformType ) {
case "translate":
if ( array.length >= 1 ) {
var tx = array[ 0 ];
var ty = tx;
if ( array.length >= 2 ) {
ty = array[ 1 ];
}
currentTransform.translate( tx, ty );
}
break;
case "rotate":
if ( array.length >= 1 ) {
var angle = 0;
var cx = 0;
var cy = 0;
// Angle
angle = - array[ 0 ] * Math.PI / 180;
if ( array.length >= 3 ) {
// Center x, y
cx = array[ 1 ];
cy = array[ 2 ];
}
// Rotate around center (cx, cy)
tempTransform1.identity().translate( -cx, -cy );
tempTransform2.identity().rotate( angle );
tempTransform3.multiplyMatrices( tempTransform2, tempTransform1 );
tempTransform1.identity().translate( cx, cy );
currentTransform.multiplyMatrices( tempTransform1, tempTransform3 );
}
break;
case "scale":
if ( array.length >= 1 ) {
var scaleX = array[ 0 ];
var scaleY = scaleX;
if ( array.length >= 2 ) {
scaleY = array[ 1 ];
}
currentTransform.scale( scaleX, scaleY );
}
break;
case "skewX":
if ( array.length === 1 ) {
currentTransform.set(
1, Math.tan( array[ 0 ] * Math.PI / 180 ), 0,
0, 1, 0,
0, 0, 1
);
}
break;
case "skewY":
if ( array.length === 1 ) {
currentTransform.set(
1, 0, 0,
Math.tan( array[ 0 ] * Math.PI / 180 ), 1, 0,
0, 0, 1
);
}
break;
case "matrix":
if ( array.length === 6 ) {
currentTransform.set(
array[ 0 ], array[ 2 ], array[ 4 ],
array[ 1 ], array[ 3 ], array[ 5 ],
0, 0, 1
);
}
break;
}
}
transform.premultiply( currentTransform );
}
return transform;
}
function transformPath( path, m ) {
function transfVec2( v2 ) {
tempV3.set( v2.x, v2.y, 1 ).applyMatrix3( m );
v2.set( tempV3.x, tempV3.y );
}
var isRotated = isTransformRotated( m );
var subPaths = path.subPaths;
for ( var i = 0, n = subPaths.length; i < n; i++ ) {
var subPath = subPaths[ i ];
var curves = subPath.curves;
for ( var j = 0; j < curves.length; j++ ) {
var curve = curves[ j ];
if ( curve.isLineCurve ) {
transfVec2( curve.v1 );
transfVec2( curve.v2 );
} else if ( curve.isCubicBezierCurve ) {
transfVec2( curve.v0 );
transfVec2( curve.v1 );
transfVec2( curve.v2 );
transfVec2( curve.v3 );
} else if ( curve.isQuadraticBezierCurve ) {
transfVec2( curve.v0 );
transfVec2( curve.v1 );
transfVec2( curve.v2 );
} else if ( curve.isEllipseCurve ) {
if ( isRotated ) {
console.warn( "SVGLoader: Elliptic arc or ellipse rotation or skewing is not implemented." );
}
tempV2.set( curve.aX, curve.aY );
transfVec2( tempV2 );
curve.aX = tempV2.x;
curve.aY = tempV2.y;
curve.xRadius *= getTransformScaleX( m );
curve.yRadius *= getTransformScaleY( m );
}
}
}
}
function isTransformRotated( m ) {
return m.elements[ 1 ] !== 0 || m.elements[ 3 ] !== 0;
}
function getTransformScaleX( m ) {
var te = m.elements;
return Math.sqrt( te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] )
}
function getTransformScaleY( m ) {
var te = m.elements;
return Math.sqrt( te[ 3 ] * te[ 3 ] + te[ 4 ] * te[ 4 ] )
}
//
console.log( 'THREE.SVGLoader' );
var paths = [];
var transformStack = [];
var tempTransform0 = new THREE.Matrix3();
var tempTransform1 = new THREE.Matrix3();
var tempTransform2 = new THREE.Matrix3();
var tempTransform3 = new THREE.Matrix3();
var tempV2 = new THREE.Vector2();
var tempV3 = new THREE.Vector3();
var currentTransform = new THREE.Matrix3();
var scope = this;
console.time( 'THREE.SVGLoader: DOMParser' );
var xml = new DOMParser().parseFromString( text, 'image/svg+xml' ); // application/xml
console.timeEnd( 'THREE.SVGLoader: DOMParser' );
console.time( 'THREE.SVGLoader: Parse' );
parseNode( xml.documentElement, {
fill: '#000',
fillOpacity: 1,
strokeOpacity: 1,
strokeWidth: 1,
strokeLineJoin: 'miter',
strokeLineCap: 'butt',
strokeMiterLimit: 4
} );
var data = { paths: paths, xml: xml.documentElement };
// console.log( paths );
console.timeEnd( 'THREE.SVGLoader: Parse' );
return data;
}
};
THREE.SVGLoader.getStrokeStyle = function ( width, color, opacity, lineJoin, lineCap, miterLimit ) {
// Param width: Stroke width
// Param color: As returned by THREE.Color.getStyle()
// Param opacity: 0 (transparent) to 1 (opaque)
// Param lineJoin: One of "round", "bevel", "miter" or "miter-limit"
// Param lineCap: One of "round", "square" or "butt"
// Param miterLimit: Maximum join length, in multiples of the "width" parameter (join is truncated if it exceeds that distance)
// Returns style object
width = width !== undefined ? width : 1;
color = color !== undefined ? color : '#000';
opacity = opacity !== undefined ? opacity : 1;
lineJoin = lineJoin !== undefined ? lineJoin : 'miter';
lineCap = lineCap !== undefined ? lineCap : 'butt';
miterLimit = miterLimit !== undefined ? miterLimit : 4;
return {
strokeColor: color,
strokeWidth: width,
strokeLineJoin: lineJoin,
strokeLineCap: lineCap,
strokeMiterLimit: miterLimit
};
};
THREE.SVGLoader.pointsToStroke = function ( points, style, arcDivisions, minDistance ) {
// Generates a stroke with some witdh around the given path.
// The path can be open or closed (last point equals to first point)
// Param points: Array of Vector2D (the path). Minimum 2 points.
// Param style: Object with SVG properties as returned by SVGLoader.getStrokeStyle(), or SVGLoader.parse() in the path.userData.style object
// Params arcDivisions: Arc divisions for round joins and endcaps. (Optional)
// Param minDistance: Points closer to this distance will be merged. (Optional)
// Returns BufferGeometry with stroke triangles (In plane z = 0). UV coordinates are generated ('u' along path. 'v' across it, from left to right)
var vertices = [];
var normals = [];
var uvs = [];
if ( THREE.SVGLoader.pointsToStrokeWithBuffers( points, style, arcDivisions, minDistance, vertices, normals, uvs ) === 0 ) {
return null;
}
var geometry = new THREE.BufferGeometry();
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( vertices, 3 ) );
geometry.addAttribute( 'normal', new THREE.Float32BufferAttribute( normals, 3 ) );
geometry.addAttribute( 'uv', new THREE.Float32BufferAttribute( uvs, 2 ) );
return geometry;
};
THREE.SVGLoader.pointsToStrokeWithBuffers = function () {
var tempV2_1 = new THREE.Vector2();
var tempV2_2 = new THREE.Vector2();
var tempV2_3 = new THREE.Vector2();
var tempV2_4 = new THREE.Vector2();
var tempV2_5 = new THREE.Vector2();
var tempV2_6 = new THREE.Vector2();
var tempV2_7 = new THREE.Vector2();
var tempV3_1 = new THREE.Vector3();
var lastPointL = new THREE.Vector2();
var lastPointR = new THREE.Vector2();
var point0L = new THREE.Vector2();
var point0R = new THREE.Vector2();
var currentPointL = new THREE.Vector2();
var currentPointR = new THREE.Vector2();
var nextPointL = new THREE.Vector2();
var nextPointR = new THREE.Vector2();
var innerPoint = new THREE.Vector2();
var outerPoint = new THREE.Vector2();
var tempTransform0 = new THREE.Matrix3();
var tempTransform1 = new THREE.Matrix3();
var tempTransform2 = new THREE.Matrix3();
return function ( points, style, arcDivisions, minDistance, vertices, normals, uvs, vertexOffset ) {
// This function can be called to update existing arrays or buffers.
// Accepts same parameters as pointsToStroke, plus the buffers and optional offset.
// Param vertexOffset: Offset vertices to start writing in the buffers (3 elements/vertex for vertices and normals, and 2 elements/vertex for uvs)
// Returns number of written vertices / normals / uvs pairs
// if 'vertices' parameter is undefined no triangles will be generated, but the returned vertices count will still be valid (useful to preallocate the buffers)
// 'normals' and 'uvs' buffers are optional
arcLengthDivisions = arcDivisions !== undefined ? arcDivisions : 12;
minDistance = minDistance !== undefined ? minDistance : 0.001;
vertexOffset = vertexOffset !== undefined ? vertexOffset : 0;
// First ensure there are no duplicated points
points = removeDuplicatedPoints( points );
var numPoints = points.length;
if ( numPoints < 2 ) return 0;
var isClosed = points[ 0 ].equals( points[ numPoints - 1 ] );
var currentPoint;
var previousPoint = points[ 0 ];
var nextPoint;
var strokeWidth2 = style.strokeWidth / 2;
var deltaU = 1 / ( numPoints - 1 );
var u0 = 0;
var innerSideModified;
var joinIsOnLeftSide;
var isMiter;
var initialJoinIsOnLeftSide = false;
var numVertices = 0;
var currentCoordinate = vertexOffset * 3;
var currentCoordinateUV = vertexOffset * 2;
// Get initial left and right stroke points
getNormal( points[ 0 ], points[ 1 ], tempV2_1 ).multiplyScalar( strokeWidth2 );
lastPointL.copy( points[ 0 ] ).sub( tempV2_1 );
lastPointR.copy( points[ 0 ] ).add( tempV2_1 );
point0L.copy( lastPointL );
point0R.copy( lastPointR );
for ( var iPoint = 1; iPoint < numPoints; iPoint ++ ) {
currentPoint = points[ iPoint ];
// Get next point
if ( iPoint === numPoints - 1 ) {
if ( isClosed ) {
// Skip duplicated initial point
nextPoint = points[ 1 ];
}
else nextPoint = undefined;
}
else {
nextPoint = points[ iPoint + 1 ];
}
// Normal of previous segment in tempV2_1
var normal1 = tempV2_1;
getNormal( previousPoint, currentPoint, normal1 );
tempV2_3.copy( normal1 ).multiplyScalar( strokeWidth2 );
currentPointL.copy( currentPoint ).sub( tempV2_3 );
currentPointR.copy( currentPoint ).add( tempV2_3 );
var u1 = u0 + deltaU;
innerSideModified = false;
if ( nextPoint !== undefined ) {
// Normal of next segment in tempV2_2
getNormal( currentPoint, nextPoint, tempV2_2 );
tempV2_3.copy( tempV2_2 ).multiplyScalar( strokeWidth2 );
nextPointL.copy( currentPoint ).sub( tempV2_3 );
nextPointR.copy( currentPoint ).add( tempV2_3 );
joinIsOnLeftSide = true;
tempV2_3.subVectors( nextPoint, previousPoint );
if ( normal1.dot( tempV2_3 ) < 0 ) {
joinIsOnLeftSide = false;
}
if ( iPoint === 1 ) initialJoinIsOnLeftSide = joinIsOnLeftSide;
tempV2_3.subVectors( nextPoint, currentPoint )
var maxInnerDistance = tempV2_3.normalize();
var dot = Math.abs( normal1.dot( tempV2_3 ) );
// If path is straight, don't create join
if ( dot !== 0 ) {
// Compute inner and outer segment intersections
var miterSide = strokeWidth2 / dot;
tempV2_3.multiplyScalar( - miterSide );
tempV2_4.subVectors( currentPoint, previousPoint );
tempV2_5.copy( tempV2_4 ).setLength( miterSide ).add( tempV2_3 );
innerPoint.copy( tempV2_5 ).negate();
var miterLength2 = tempV2_5.length();
var segmentLengthPrev = tempV2_4.length();
tempV2_4.divideScalar( segmentLengthPrev );
tempV2_6.subVectors( nextPoint, currentPoint );
var segmentLengthNext = tempV2_6.length();
tempV2_6.divideScalar( segmentLengthNext );
// Check that previous and next segments doesn't overlap with the innerPoint of intersection
if ( tempV2_4.dot( innerPoint ) < segmentLengthPrev && tempV2_6.dot( innerPoint ) < segmentLengthNext ) {
innerSideModified = true;
}
outerPoint.copy( tempV2_5 ).add( currentPoint );
innerPoint.add( currentPoint );
isMiter = false;
if ( innerSideModified ) {
if ( joinIsOnLeftSide ) {
nextPointR.copy( innerPoint );
currentPointR.copy( innerPoint );
}
else {
nextPointL.copy( innerPoint );
currentPointL.copy( innerPoint );
}
}
else {
// The segment triangles are generated here if there was overlapping
makeSegmentTriangles();
}
switch ( style.strokeLineJoin ) {
case 'bevel':
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
break;
case 'round':
// Segment triangles
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
// Join triangles
if ( joinIsOnLeftSide ) {
makeCircularSector( currentPoint, currentPointL, nextPointL, u1, 0 );
}
else {
makeCircularSector( currentPoint, nextPointR, currentPointR, u1, 1 );
}
break;
case 'miter':
case 'miter-clip':
default:
var miterFraction = ( strokeWidth2 * style.strokeMiterLimit ) / miterLength2;
if ( miterFraction < 1 ) {
// The join miter length exceeds the miter limit
if ( style.strokeLineJoin !== 'miter-clip' ) {
makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u1 );
break;
}
else {
// Segment triangles
createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified );
// Miter-clip join triangles
if ( joinIsOnLeftSide ) {
tempV2_6.subVectors( outerPoint, currentPointL ).multiplyScalar( miterFraction ).add( currentPointL );
tempV2_7.subVectors( outerPoint, nextPointL ).multiplyScalar( miterFraction ).add( nextPointL );
addVertex( currentPointL, u1, 0 );
addVertex( tempV2_6, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_6, u1, 0 );
addVertex( tempV2_7, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_7, u1, 0 );
addVertex( nextPointL, u1, 0 );
}
else {
tempV2_6.subVectors( outerPoint, currentPointR ).multiplyScalar( miterFraction ).add( currentPointR );
tempV2_7.subVectors( outerPoint, nextPointR ).multiplyScalar( miterFraction ).add( nextPointR );
addVertex( currentPointR, u1, 1 );
addVertex( tempV2_6, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_6, u1, 1 );
addVertex( tempV2_7, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( tempV2_7, u1, 1 );
addVertex( nextPointR, u1, 1 );
}
}
}
else {
// Miter join segment triangles
if ( innerSideModified ) {
// Optimized segment + join triangles
if ( joinIsOnLeftSide ) {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( outerPoint, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( outerPoint, u1, 0 );
addVertex( innerPoint, u1, 1 );
}
else {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( outerPoint, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( outerPoint, u1, 1 );
}
if ( joinIsOnLeftSide ) {
nextPointL.copy( outerPoint );
}
else {
nextPointR.copy( outerPoint );
}
}
else {
// Add extra miter join triangles
if ( joinIsOnLeftSide ) {
addVertex( currentPointL, u1, 0 );
addVertex( outerPoint, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( outerPoint, u1, 0 );
addVertex( nextPointL, u1, 0 );
}
else {
addVertex( currentPointR, u1, 1 );
addVertex( outerPoint, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( outerPoint, u1, 1 );
addVertex( nextPointR, u1, 1 );
}
}
isMiter = true;
}
break;
}
}
else {
// The segment triangles are generated here when two consecutive points are collinear
makeSegmentTriangles();
}
}
else {
// The segment triangles are generated here if it is the ending segment
makeSegmentTriangles();
}
if ( ! isClosed && iPoint === numPoints - 1 ) {
// Start line endcap
addCapGeometry( points[ 0 ], point0L, point0R, joinIsOnLeftSide, true, u0 );
}
// Increment loop variables
u0 = u1;
previousPoint = currentPoint;
lastPointL.copy( nextPointL );
lastPointR.copy( nextPointR );
}
if ( ! isClosed ) {
// Ending line endcap
addCapGeometry( currentPoint, currentPointL, currentPointR, joinIsOnLeftSide, false, u1 );
}
else if ( innerSideModified && vertices ) {
// Modify path first segment vertices to adjust to the segments inner and outer intersections
var lastOuter = outerPoint;
var lastInner = innerPoint;
if ( initialJoinIsOnLeftSide !== joinIsOnLeftSide) {
lastOuter = innerPoint;
lastInner = outerPoint;
}
if ( joinIsOnLeftSide ) {
lastInner.toArray( vertices, 0 * 3 );
lastInner.toArray( vertices, 3 * 3 );
if ( isMiter ) {
lastOuter.toArray( vertices, 1 * 3 );
}
}
else {
lastInner.toArray( vertices, 1 * 3 );
lastInner.toArray( vertices, 3 * 3 );
if ( isMiter ) {
lastOuter.toArray( vertices, 0 * 3 );
}
}
}
return numVertices;
// -- End of algorithm
// -- Functions
function getNormal( p1, p2, result ) {
result.subVectors( p2, p1 );
return result.set( - result.y, result.x ).normalize();
}
function addVertex( position, u, v ) {
if ( vertices ) {
vertices[ currentCoordinate ] = position.x;
vertices[ currentCoordinate + 1 ] = position.y;
vertices[ currentCoordinate + 2 ] = 0;
if ( normals ) {
normals[ currentCoordinate ] = 0;
normals[ currentCoordinate + 1 ] = 0;
normals[ currentCoordinate + 2 ] = 1;
}
currentCoordinate += 3;
if ( uvs ) {
uvs[ currentCoordinateUV ] = u;
uvs[ currentCoordinateUV + 1 ] = v;
currentCoordinateUV += 2;
}
}
numVertices += 3;
}
function makeCircularSector( center, p1, p2, u, v ) {
// param p1, p2: Points in the circle arc.
// p1 and p2 are in clockwise direction.
tempV2_1.copy( p1 ).sub( center ).normalize();
tempV2_2.copy( p2 ).sub( center ).normalize();
var angle = Math.PI;
var dot = tempV2_1.dot( tempV2_2 );
if ( Math.abs( dot ) < 1 ) angle = Math.abs( Math.acos( dot ) );
angle /= arcLengthDivisions;
tempV2_3.copy( p1 );
for ( var i = 0, il = arcLengthDivisions - 1; i < il; i++ ) {
tempV2_4.copy( tempV2_3 ).rotateAround( center, angle );
addVertex( tempV2_3, u, v );
addVertex( tempV2_4, u, v );
addVertex( center, u, 0.5 );
tempV2_3.copy( tempV2_4 );
}
addVertex( tempV2_4, u, v );
addVertex( p2, u, v );
addVertex( center, u, 0.5 );
}
function makeSegmentTriangles() {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 1 );
addVertex( currentPointR, u1, 0 );
}
function makeSegmentWithBevelJoin( joinIsOnLeftSide, innerSideModified, u ) {
if ( innerSideModified ) {
// Optimized segment + bevel triangles
if ( joinIsOnLeftSide ) {
// Path segments triangles
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 0 );
addVertex( innerPoint, u1, 1 );
// Bevel join triangle
addVertex( currentPointL, u, 0 );
addVertex( nextPointL, u, 0 );
addVertex( innerPoint, u, 0.5 );
}
else {
// Path segments triangles
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPointR, u1, 1 );
// Bevel join triangle
addVertex( currentPointR, u, 1 );
addVertex( nextPointR, u, 0 );
addVertex( innerPoint, u, 0.5 );
}
}
else {
// Bevel join triangle. The segment triangles are done in the main loop
if ( joinIsOnLeftSide ) {
addVertex( currentPointL, u, 0 );
addVertex( nextPointL, u, 0 );
addVertex( currentPoint, u, 0.5 );
}
else {
addVertex( currentPointR, u, 1 );
addVertex( nextPointR, u, 0 );
addVertex( currentPoint, u, 0.5 );
}
}
}
function createSegmentTrianglesWithMiddleSection( joinIsOnLeftSide, innerSideModified ) {
if ( innerSideModified ) {
if ( joinIsOnLeftSide ) {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointL, u1, 0 );
addVertex( lastPointR, u0, 1 );
addVertex( currentPointL, u1, 0 );
addVertex( innerPoint, u1, 1 );
addVertex( currentPointL, u0, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( innerPoint, u1, 1 );
addVertex( currentPoint, u1, 0.5 );
addVertex( nextPointL, u0, 0 );
addVertex( innerPoint, u1, 1 );
}
else {
addVertex( lastPointR, u0, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( lastPointL, u0, 0 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPointR, u1, 1 );
addVertex( currentPointR, u0, 1 );
addVertex( innerPoint, u1, 0 );
addVertex( currentPoint, u1, 0.5 );
addVertex( currentPoint, u1, 0.5 );
addVertex( innerPoint, u1, 0 );
addVertex( nextPointR, u0, 1 );
}
}
}
function addCapGeometry( center, p1, p2, joinIsOnLeftSide, start, u ) {
// param center: End point of the path
// param p1, p2: Left and right cap points
switch ( style.strokeLineCap ) {
case 'round':
if ( start ) {
makeCircularSector( center, p2, p1, u, 0.5 );
}
else {
makeCircularSector( center, p1, p2, u, 0.5 );
}
break;
case 'square':
if ( start ) {
tempV2_1.subVectors( p1, center );
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
// Modify already existing vertices
if ( joinIsOnLeftSide ) {
tempV2_3.toArray( vertices, 1 * 3 );
tempV2_4.toArray( vertices, 0 * 3 );
tempV2_4.toArray( vertices, 3 * 3 );
}
else {
tempV2_3.toArray( vertices, 1 * 3 );
tempV2_3.toArray( vertices, 3 * 3 );
tempV2_4.toArray( vertices, 0 * 3 );
}
}
else {
tempV2_1.subVectors( p2, center );
tempV2_2.set( tempV2_1.y, - tempV2_1.x );
tempV2_3.addVectors( tempV2_1, tempV2_2 ).add( center );
tempV2_4.subVectors( tempV2_2, tempV2_1 ).add( center );
var vl = vertices.length;
// Modify already existing vertices
if ( joinIsOnLeftSide ) {
tempV2_3.toArray( vertices, vl - 1 * 3 );
tempV2_4.toArray( vertices, vl - 2 * 3 );
tempV2_4.toArray( vertices, vl - 4 * 3 );
}
else {
tempV2_3.toArray( vertices, vl - 2 * 3 );
tempV2_4.toArray( vertices, vl - 1 * 3 );
tempV2_4.toArray( vertices, vl - 4 * 3 );
}
}
break;
case 'butt':
default:
// Nothing to do here
break;
}
}
function removeDuplicatedPoints( points ) {
// Creates a new array if necessary with duplicated points removed.
// This does not remove duplicated initial and ending points of a closed path.
var dupPoints = false;
for ( var i = 1, n = points.length - 1; i < n; i ++ ) {
if ( points[ i ].distanceTo( points[ i + 1 ] ) < minDistance ) {
dupPoints = true;
break;
}
}
if ( ! dupPoints ) return points;
var newPoints = [];
newPoints.push( points[ 0 ] );
for ( var i = 1, n = points.length - 1; i < n; i ++ ) {
if ( points[ i ].distanceTo( points[ i + 1 ] ) >= minDistance ) {
newPoints.push( points[ i ] );
}
}
newPoints.push( points[ points.length - 1 ] );
return newPoints;
}
};
}();