julien-c's picture
julien-c HF staff
do not gitignore the builds
6cd9596
raw
history blame
54.6 kB
/**
* @author Lewy Blue https://github.com/looeee
*
* Load files in LWO3 format
*
* LWO3 format specification:
* http://static.lightwave3d.com/sdk/2018/html/filefmts/lwo3.html
*
* LWO2 format specification (not tested, however the loader should be largely backwards compatible)
* http://static.lightwave3d.com/sdk/2018/html/filefmts/lwo2.html
*
*/
THREE.LWOLoader = ( function () {
var lwoTree;
function LWOLoader( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
}
LWOLoader.prototype = {
constructor: LWOLoader,
crossOrigin: 'anonymous',
load: function ( url, onLoad, onProgress, onError ) {
var self = this;
var path = ( self.path === undefined ) ? THREE.LoaderUtils.extractUrlBase( url ) : self.path;
// give the mesh a default name based on the filename
var modelName = url.split( path ).pop().split( '.' )[ 0 ];
var loader = new THREE.FileLoader( this.manager );
loader.setPath( self.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
// console.time( 'Total parsing: ' );
onLoad( self.parse( buffer, path, modelName ) );
// console.timeEnd( 'Total parsing: ' );
}, onProgress, onError );
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
setPath: function ( value ) {
this.path = value;
return this;
},
setResourcePath: function ( value ) {
this.resourcePath = value;
return this;
},
parse: function ( iffBuffer, path, modelName ) {
lwoTree = new IFFParser().parse( iffBuffer );
// console.log( 'lwoTree', lwoTree );
var textureLoader = new THREE.TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
return new LWOTreeParser( textureLoader ).parse( modelName );
}
};
// Parse the lwoTree object
function LWOTreeParser( textureLoader ) {
this.textureLoader = textureLoader;
}
LWOTreeParser.prototype = {
constructor: LWOTreeParser,
parse: function ( modelName ) {
this.materials = new MaterialParser( this.textureLoader ).parse();
this.defaultLayerName = modelName;
this.meshes = this.parseLayers();
return {
materials: this.materials,
meshes: this.meshes,
};
},
parseLayers() {
// array of all meshes for building hierarchy
var meshes = [];
// final array containing meshes with scene graph hierarchy set up
var finalMeshes = [];
var geometryParser = new GeometryParser();
var self = this;
lwoTree.layers.forEach( function ( layer ) {
var geometry = geometryParser.parse( layer.geometry, layer );
var mesh = self.parseMesh( geometry, layer );
meshes[ layer.number ] = mesh;
if ( layer.parent === - 1 ) finalMeshes.push( mesh );
else meshes[ layer.parent ].add( mesh );
} );
this.applyPivots( finalMeshes );
return finalMeshes;
},
parseMesh( geometry, layer ) {
var mesh;
var materials = this.getMaterials( geometry.userData.matNames, layer.geometry.type );
this.duplicateUVs( geometry, materials );
if ( layer.geometry.type === 'points' ) mesh = new THREE.Points( geometry, materials );
else if ( layer.geometry.type === 'lines' ) mesh = new THREE.LineSegments( geometry, materials );
else mesh = new THREE.Mesh( geometry, materials );
if ( layer.name ) mesh.name = layer.name;
else mesh.name = this.defaultLayerName + '_layer_' + layer.number;
mesh.userData.pivot = layer.pivot;
return mesh;
},
// TODO: may need to be reversed in z to convert LWO to three.js coordinates
applyPivots( meshes ) {
meshes.forEach( function ( mesh ) {
mesh.traverse( function ( child ) {
var pivot = child.userData.pivot;
child.position.x += pivot[ 0 ];
child.position.y += pivot[ 1 ];
child.position.z += pivot[ 2 ];
if ( child.parent ) {
var parentPivot = child.parent.userData.pivot;
child.position.x -= parentPivot[ 0 ];
child.position.y -= parentPivot[ 1 ];
child.position.z -= parentPivot[ 2 ];
}
} );
} );
},
getMaterials( namesArray, type ) {
var materials = [];
var self = this;
namesArray.forEach( function ( name, i ) {
materials[ i ] = self.getMaterialByName( name );
} );
// convert materials to line or point mats if required
if ( type === 'points' || type === 'lines' ) {
materials.forEach( function ( mat, i ) {
var spec = {
color: mat.color,
};
if ( type === 'points' ) {
spec.size = 0.1;
spec.map = mat.map;
spec.morphTargets = mat.morphTargets;
materials[ i ] = new THREE.PointsMaterial( spec );
} else if ( type === 'lines' ) {
materials[ i ] = new THREE.LineBasicMaterial( spec );
}
} );
}
// if there is only one material, return that directly instead of array
var filtered = materials.filter( Boolean );
if ( filtered.length === 1 ) return filtered[ 0 ];
return materials;
},
getMaterialByName( name ) {
return this.materials.filter( function ( m ) {
return m.name === name;
} )[ 0 ];
},
// If the material has an aoMap, duplicate UVs
duplicateUVs( geometry, materials ) {
var duplicateUVs = false;
if ( ! Array.isArray( materials ) ) {
if ( materials.aoMap ) duplicateUVs = true;
} else {
materials.forEach( function ( material ) {
if ( material.aoMap ) duplicateUVs = true;
} );
}
if ( ! duplicateUVs ) return;
geometry.addAttribute( 'uv2', new THREE.BufferAttribute( geometry.attributes.uv.array, 2 ) );
},
};
function MaterialParser( textureLoader ) {
this.textureLoader = textureLoader;
}
MaterialParser.prototype = {
constructor: MaterialParser,
parse: function () {
var materials = [];
this.textures = {};
for ( var name in lwoTree.materials ) {
materials.push( this.parseMaterial( lwoTree.materials[ name ], name, lwoTree.textures ) );
}
return materials;
},
parseMaterial( materialData, name, textures ) {
var params = {
name: name,
side: this.getSide( materialData.attributes ),
flatShading: this.getSmooth( materialData.attributes ),
};
var connections = this.parseConnections( materialData.connections, materialData.nodes );
var maps = this.parseTextureNodes( connections.maps );
this.parseAttributeImageMaps( connections.attributes, textures, maps, materialData.maps );
var attributes = this.parseAttributes( connections.attributes, maps );
this.parseEnvMap( connections, maps, attributes );
params = Object.assign( maps, params );
params = Object.assign( params, attributes );
var type = connections.attributes.Roughness ? 'Standard' : 'Phong';
return new THREE[ 'Mesh' + type + 'Material' ]( params );
},
// Note: converting from left to right handed coords by switching x -> -x in vertices, and
// then switching mat FrontSide -> BackSide
// NB: this means that THREE.FrontSide and THREE.BackSide have been switched!
getSide( attributes ) {
if ( ! attributes.side ) return THREE.BackSide;
switch ( attributes.side ) {
case 0:
case 1:
return THREE.BackSide;
case 2: return THREE.FrontSide;
case 3: return THREE.DoubleSide;
}
},
getSmooth( attributes ) {
if ( ! attributes.smooth ) return true;
return ! attributes.smooth;
},
parseConnections( connections, nodes ) {
var materialConnections = {
maps: {}
};
var inputName = connections.inputName;
var inputNodeName = connections.inputNodeName;
var nodeName = connections.nodeName;
var self = this;
inputName.forEach( function ( name, index ) {
if ( name === 'Material' ) {
var matNode = self.getNodeByRefName( inputNodeName[ index ], nodes );
materialConnections.attributes = matNode.attributes;
materialConnections.envMap = matNode.fileName;
materialConnections.name = inputNodeName[ index ];
}
} );
nodeName.forEach( function ( name, index ) {
if ( name === materialConnections.name ) {
materialConnections.maps[ inputName[ index ] ] = self.getNodeByRefName( inputNodeName[ index ], nodes );
}
} );
return materialConnections;
},
getNodeByRefName( refName, nodes ) {
for ( var name in nodes ) {
if ( nodes[ name ].refName === refName ) return nodes[ name ];
}
},
parseTextureNodes( textureNodes ) {
var maps = {};
for ( name in textureNodes ) {
var node = textureNodes[ name ];
var path = node.fileName;
if ( ! path ) return;
var texture = this.loadTexture( path );
if ( node.widthWrappingMode !== undefined ) texture.wrapS = this.getWrappingType( node.widthWrappingMode );
if ( node.heightWrappingMode !== undefined ) texture.wrapT = this.getWrappingType( node.heightWrappingMode );
switch ( name ) {
case 'Color':
maps.map = texture;
break;
case 'Roughness':
maps.roughnessMap = texture;
maps.roughness = 0.5;
break;
case 'Specular':
maps.specularMap = texture;
maps.specular = 0xffffff;
break;
case 'Luminous':
maps.emissiveMap = texture;
maps.emissive = 0x808080;
break;
case 'Metallic':
maps.metalnessMap = texture;
maps.metalness = 0.5;
break;
case 'Transparency':
case 'Alpha':
maps.alphaMap = texture;
maps.transparent = true;
break;
case 'Normal':
maps.normalMap = texture;
if ( node.amplitude !== undefined ) maps.normalScale = new THREE.Vector2( node.amplitude, node.amplitude );
break;
case 'Bump':
maps.bumpMap = texture;
break;
}
}
// LWO BSDF materials can have both spec and rough, but this is not valid in three
if ( maps.roughnessMap && maps.specularMap ) delete maps.specularMap;
return maps;
},
// maps can also be defined on individual material attributes, parse those here
// This occurs on Standard (Phong) surfaces
parseAttributeImageMaps( attributes, textures, maps ) {
for ( var name in attributes ) {
var attribute = attributes[ name ];
if ( attribute.maps ) {
var mapData = attribute.maps[ 0 ];
var path = this.getTexturePathByIndex( mapData.imageIndex, textures );
if ( ! path ) return;
var texture = this.loadTexture( path );
if ( mapData.wrap !== undefined ) texture.wrapS = this.getWrappingType( mapData.wrap.w );
if ( mapData.wrap !== undefined ) texture.wrapT = this.getWrappingType( mapData.wrap.h );
switch ( name ) {
case 'Color':
maps.map = texture;
break;
case 'Diffuse':
maps.aoMap = texture;
break;
case 'Roughness':
maps.roughnessMap = texture;
maps.roughness = 1;
break;
case 'Specular':
maps.specularMap = texture;
maps.specular = 0xffffff;
break;
case 'Luminosity':
maps.emissiveMap = texture;
maps.emissive = 0x808080;
break;
case 'Metallic':
maps.metalnessMap = texture;
maps.metalness = 1;
break;
case 'Transparency':
case 'Alpha':
maps.alphaMap = texture;
maps.transparent = true;
break;
case 'Normal':
maps.normalMap = texture;
break;
case 'Bump':
maps.bumpMap = texture;
break;
}
}
}
},
parseAttributes( attributes, maps ) {
var params = {};
// don't use color data if color map is present
if ( attributes.Color && ! maps.map ) {
params.color = new THREE.Color().fromArray( attributes.Color.value );
} else params.color = new THREE.Color();
if ( attributes.Transparency && attributes.Transparency.value !== 0 ) {
params.opacity = 1 - attributes.Transparency.value;
params.transparent = true;
}
if ( attributes[ 'Bump Height' ] ) params.bumpScale = attributes[ 'Bump Height' ].value * 0.1;
if ( attributes[ 'Refraction Index' ] ) params.refractionRatio = 1 / attributes[ 'Refraction Index' ].value;
this.parseStandardAttributes( params, attributes, maps );
this.parsePhongAttributes( params, attributes, maps );
return params;
},
parseStandardAttributes( params, attributes, maps ) {
if ( attributes.Luminous && attributes.Luminous.value !== 0 && attributes[ 'Luminous Color' ] ) {
var emissiveColor = attributes[ 'Luminous Color' ].value.map( function ( val ) {
return val * attributes.Luminous.value;
} );
params.emissive = new THREE.Color().fromArray( emissiveColor );
}
if ( attributes.Roughness && ! maps.roughnessMap ) params.roughness = attributes.Roughness.value;
if ( attributes.Metallic && ! maps.metalnessMap ) params.metalness = attributes.Metallic.value;
},
parsePhongAttributes( params, attributes, maps ) {
if ( attributes.Diffuse ) params.color.multiplyScalar( attributes.Diffuse.value );
if ( attributes.Reflection ) {
params.reflectivity = attributes.Reflection.value;
params.combine = THREE.AddOperation;
}
if ( attributes.Luminosity && ! maps.emissiveMap ) params.emissive = new THREE.Color().setScalar( attributes.Luminosity.value );
if ( attributes.Glossiness !== undefined ) params.shininess = 5 + Math.pow( attributes.Glossiness.value * 7, 6 );
// parse specular if there is no roughness - we will interpret the material as 'Phong' in this case
if ( ! attributes.Roughness && attributes.Specular && ! maps.specularMap ) params.specular = new THREE.Color().setScalar( attributes.Specular.value * 1.5 );
},
parseEnvMap( connections, maps, attributes ) {
if ( connections.envMap ) {
var envMap = this.loadTexture( connections.envMap );
if ( attributes.transparent && attributes.opacity < 0.999 ) {
envMap.mapping = THREE.EquirectangularRefractionMapping;
// Reflectivity and refraction mapping don't work well together in Phong materials
if ( attributes.reflectivity !== undefined ) {
delete attributes.reflectivity;
delete attributes.combine;
}
if ( attributes.metalness !== undefined ) {
delete attributes.metalness;
}
} else envMap.mapping = THREE.EquirectangularReflectionMapping;
maps.envMap = envMap;
}
},
// get texture defined at top level by its index
getTexturePathByIndex( index ) {
var fileName = '';
if ( ! lwoTree.textures ) return fileName;
lwoTree.textures.forEach( function ( texture ) {
if ( texture.index === index ) fileName = texture.fileName;
} );
return fileName;
},
loadTexture( path ) {
if ( ! path ) return null;
return this.textureLoader.load( this.cleanPath( path ) );
},
// Lightwave expects textures to be in folder called Images relative
// to the model
// Otherwise, the full absolute path is stored: D://some_directory/textures/bumpMap.png
// In this case, we'll strip out everything and load 'bumpMap.png' from the same directory as the model
cleanPath( path ) {
if ( path.indexOf( 'Images' ) === 0 ) return './' + path;
return path.split( '/' ).pop().split( '\\' ).pop();
},
// 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge
getWrappingType( num ) {
switch ( num ) {
case 0:
console.warn( 'LWOLoader: "Reset" texture wrapping type is not supported in three.js' );
return THREE.ClampToEdgeWrapping;
case 1: return THREE.RepeatWrapping;
case 2: return THREE.MirroredRepeatWrapping;
case 3: return THREE.ClampToEdgeWrapping;
}
},
getType( nodeData ) {
if ( nodeData.roughness ) return 'Standard';
return 'Phong';
},
};
function GeometryParser() {}
GeometryParser.prototype = {
constructor: GeometryParser,
parse( geoData, layer ) {
var geometry = new THREE.BufferGeometry();
geometry.addAttribute( 'position', new THREE.Float32BufferAttribute( geoData.points, 3 ) );
var indices = this.splitIndices( geoData.vertexIndices, geoData.polygonDimensions );
geometry.setIndex( indices );
this.parseGroups( geometry, geoData );
geometry.computeVertexNormals();
this.parseUVs( geometry, layer, indices );
this.parseMorphTargets( geometry, layer, indices );
// TODO: z may need to be reversed to account for coordinate system change
geometry.translate( - layer.pivot[ 0 ], - layer.pivot[ 1 ], - layer.pivot[ 2 ] );
// var userData = geometry.userData;
// geometry = geometry.toNonIndexed()
// geometry.userData = userData;
return geometry;
},
// split quads into tris
splitIndices( indices, polygonDimensions ) {
var remappedIndices = [];
var i = 0;
polygonDimensions.forEach( function ( dim ) {
if ( dim < 4 ) {
for ( var k = 0; k < dim; k ++ ) remappedIndices.push( indices[ i + k ] );
} else if ( dim === 4 ) {
remappedIndices.push(
indices[ i ],
indices[ i + 1 ],
indices[ i + 2 ],
indices[ i ],
indices[ i + 2 ],
indices[ i + 3 ]
);
} else if ( dim > 4 ) console.warn( 'LWOLoader: polygons with greater than 4 sides are not supported' );
i += dim;
} );
return remappedIndices;
},
// NOTE: currently ignoring poly indices and assuming that they are intelligently ordered
parseGroups( geometry, geoData ) {
var tags = lwoTree.tags;
var matNames = [];
var elemSize = 3;
if ( geoData.type === 'lines' ) elemSize = 2;
if ( geoData.type === 'points' ) elemSize = 1;
var remappedIndices = this.splitMaterialIndices( geoData.polygonDimensions, geoData.materialIndices );
var indexNum = 0; // create new indices in numerical order
var indexPairs = {}; // original indices mapped to numerical indices
var prevMaterialIndex;
var prevStart = 0;
var currentCount = 0;
for ( var i = 0; i < remappedIndices.length; i += 2 ) {
var materialIndex = remappedIndices[ i + 1 ];
if ( i === 0 ) matNames[ indexNum ] = tags[ materialIndex ];
if ( prevMaterialIndex === undefined ) prevMaterialIndex = materialIndex;
if ( materialIndex !== prevMaterialIndex ) {
var currentIndex;
if ( indexPairs[ tags[ prevMaterialIndex ] ] ) {
currentIndex = indexPairs[ tags[ prevMaterialIndex ] ];
} else {
currentIndex = indexNum;
indexPairs[ tags[ prevMaterialIndex ] ] = indexNum;
matNames[ indexNum ] = tags[ prevMaterialIndex ];
indexNum ++;
}
geometry.addGroup( prevStart, currentCount, currentIndex );
prevStart += currentCount;
prevMaterialIndex = materialIndex;
currentCount = 0;
}
currentCount += elemSize;
}
// the loop above doesn't add the last group, do that here.
if ( geometry.groups.length > 0 ) {
var currentIndex;
if ( indexPairs[ tags[ materialIndex ] ] ) {
currentIndex = indexPairs[ tags[ materialIndex ] ];
} else {
currentIndex = indexNum;
indexPairs[ tags[ materialIndex ] ] = indexNum;
matNames[ indexNum ] = tags[ materialIndex ];
}
geometry.addGroup( prevStart, currentCount, currentIndex );
}
// Mat names from TAGS chunk, used to build up an array of materials for this geometry
geometry.userData.matNames = matNames;
},
splitMaterialIndices( polygonDimensions, indices ) {
var remappedIndices = [];
polygonDimensions.forEach( function ( dim, i ) {
if ( dim <= 3 ) {
remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] );
} else if ( dim === 4 ) {
remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ], indices[ i * 2 ], indices[ i * 2 + 1 ] );
} // ignore > 4 for now
} );
return remappedIndices;
},
// UV maps:
// 1: are defined via index into an array of points, not into a geometry
// - the geometry is also defined by an index into this array, but the indexes may not match
// 2: there can be any number of UV maps for a single geometry. Here these are combined,
// with preference given to the first map encountered
// 3: UV maps can be partial - that is, defined for only a part of the geometry
// 4: UV maps can be VMAP or VMAD (discontinuous, to allow for seams). In practice, most
// UV maps are defined as partially VMAP and partially VMAD
// VMADs are currently not supported
parseUVs( geometry, layer ) {
// start by creating a UV map set to zero for the whole geometry
var remappedUVs = Array.from( Array( geometry.attributes.position.count * 2 ), function () {
return 0;
} );
for ( var name in layer.uvs ) {
var uvs = layer.uvs[ name ].uvs;
var uvIndices = layer.uvs[ name ].uvIndices;
uvIndices.forEach( function ( i, j ) {
remappedUVs[ i * 2 ] = uvs[ j * 2 ];
remappedUVs[ i * 2 + 1 ] = uvs[ j * 2 + 1 ];
} );
}
geometry.addAttribute( 'uv', new THREE.Float32BufferAttribute( remappedUVs, 2 ) );
},
parseMorphTargets( geometry, layer ) {
var num = 0;
for ( var name in layer.morphTargets ) {
var remappedPoints = geometry.attributes.position.array.slice();
if ( ! geometry.morphAttributes.position ) geometry.morphAttributes.position = [];
var morphPoints = layer.morphTargets[ name ].points;
var morphIndices = layer.morphTargets[ name ].indices;
var type = layer.morphTargets[ name ].type;
morphIndices.forEach( function ( i, j ) {
if ( type === 'relative' ) {
remappedPoints[ i * 3 ] += morphPoints[ j * 3 ];
remappedPoints[ i * 3 + 1 ] += morphPoints[ j * 3 + 1 ];
remappedPoints[ i * 3 + 2 ] += morphPoints[ j * 3 + 2 ];
} else {
remappedPoints[ i * 3 ] = morphPoints[ j * 3 ];
remappedPoints[ i * 3 + 1 ] = morphPoints[ j * 3 + 1 ];
remappedPoints[ i * 3 + 2 ] = morphPoints[ j * 3 + 2 ];
}
} );
geometry.morphAttributes.position[ num ] = new THREE.Float32BufferAttribute( remappedPoints, 3 );
geometry.morphAttributes.position[ num ].name = name;
num ++;
}
},
};
// parse data from the IFF buffer.
// LWO3 files are in IFF format and can contain the following data types, referred to by shorthand codes
//
// ATOMIC DATA TYPES
// ID Tag - 4x 7 bit uppercase ASCII chars: ID4
// signed integer, 1, 2, or 4 byte length: I1, I2, I4
// unsigned integer, 1, 2, or 4 byte length: U1, U2, U4
// float, 4 byte length: F4
// string, series of ASCII chars followed by null byte (If the length of the string including the null terminating byte is odd, an extra null is added so that the data that follows will begin on an even byte boundary): S0
//
// COMPOUND DATA TYPES
// Variable-length Index (index into an array or collection): U2 or U4 : VX
// Color (RGB): F4 + F4 + F4: COL12
// Coordinate (x, y, z): F4 + F4 + F4: VEC12
// Percentage F4 data type from 0->1 with 1 = 100%: FP4
// Angle in radian F4: ANG4
// Filename (string) S0: FNAM0
// XValue F4 + index (VX) + optional envelope( ENVL ): XVAL
// XValue vector VEC12 + index (VX) + optional envelope( ENVL ): XVAL3
//
// The IFF file is arranged in chunks:
// CHUNK = ID4 + length (U4) + length X bytes of data + optional 0 pad byte
// optional 0 pad byte is there to ensure chunk ends on even boundary, not counted in size
// Chunks are combined in Forms (collections of chunks)
// FORM = string 'FORM' (ID4) + length (U4) + type (ID4) + optional ( CHUNK | FORM )
// CHUNKS and FORMS are collectively referred to as blocks
// The entire file is contained in one top level FORM
function IFFParser() {}
IFFParser.prototype = {
constructor: IFFParser,
parse: function ( buffer ) {
// dump the whole buffer as a string for testing
// printBuffer( buffer );
this.reader = new DataViewReader( buffer );
this.tree = {
materials: {},
layers: [],
tags: [],
textures: [],
};
// start out at the top level to add any data before first layer is encountered
this.currentLayer = this.tree;
this.currentForm = this.tree;
// parse blocks until end of file is reached
while ( ! this.reader.endOfFile() ) this.parseBlock();
return this.tree;
},
parseBlock() {
var blockID = this.reader.getIDTag();
var length = this.reader.getUint32(); // size of data in bytes
// Data types may be found in either LWO2 OR LWO3 spec
switch ( blockID ) {
case 'FORM': // form blocks may consist of sub -chunks or sub-forms
this.parseForm( length );
break;
// SKIPPED CHUNKS
// MISC skipped
case 'ICON': // Thumbnail Icon Image
case 'VMPA': // Vertex Map Parameter
case 'BBOX': // bounding box
// case 'VMMD':
// case 'VTYP':
// normal maps can be specified, normally on models imported from other applications. Currently ignored
case 'NORM':
// ENVL FORM skipped
case 'PRE ':
case 'POST':
case 'KEY ':
case 'SPAN':
// CLIP FORM skipped
case 'TIME':
case 'CLRS':
case 'CLRA':
case 'FILT':
case 'DITH':
case 'CONT':
case 'BRIT':
case 'SATR':
case 'HUE ':
case 'GAMM':
case 'NEGA':
case 'IFLT':
case 'PFLT':
// Image Map Layer skipped
case 'PROJ':
case 'AXIS':
case 'AAST':
case 'PIXB':
case 'STCK':
// Procedural Textures skipped
case 'VALU':
// Gradient Textures skipped
case 'PNAM':
case 'INAM':
case 'GRST':
case 'GREN':
case 'GRPT':
case 'FKEY':
case 'IKEY':
// Texture Mapping Form skipped
case 'CSYS':
// Surface CHUNKs skipped
case 'OPAQ': // top level 'opacity' checkbox
case 'CMAP': // clip map
// Surface node CHUNKS skipped
// These mainly specify the node editor setup in LW
case 'NLOC':
case 'NZOM':
case 'NVER':
case 'NSRV':
case 'NCRD':
case 'NMOD':
case 'NPRW':
case 'NPLA':
case 'VERS':
case 'ENUM':
case 'FLAG':
case 'TAG ':
// Car Material CHUNKS
case 'CGMD':
case 'CGTY':
case 'CGST':
case 'CGEN':
case 'CGTS':
case 'CGTE':
case 'OSMP':
case 'OMDE':
case 'OUTR':
this.reader.skip( length );
break;
// Skipped LWO2 chunks
case 'DIFF': // diffuse level, may be necessary to modulate COLR with this
case 'TRNL':
case 'REFL':
case 'GLOS':
case 'SHRP':
case 'RFOP':
case 'RSAN':
case 'TROP':
case 'RBLR':
case 'TBLR':
case 'CLRH':
case 'CLRF':
case 'ADTR':
case 'GLOW':
case 'LINE':
case 'ALPH':
case 'LINE':
case 'VCOL':
case 'ENAB':
this.reader.skip( length );
break;
// Texture node chunks (not in spec)
case 'IPIX': // usePixelBlending
case 'IMIP': // useMipMaps
case 'IMOD': // imageBlendingMode
case 'AMOD': // unknown
case 'IINV': // imageInvertAlpha
case 'INCR': // imageInvertColor
case 'IAXS': // imageAxis ( for non-UV maps)
case 'IFOT': // imageFallofType
case 'ITIM': // timing for animated textures
case 'IWRL':
case 'IUTI':
case 'IINX':
case 'IINY':
case 'IINZ':
case 'IREF': // possibly a VX for reused texture nodes
if ( length === 4 ) this.currentNode[ blockID ] = this.reader.getInt32();
else this.reader.skip( length );
break;
case 'OTAG':
this.parseObjectTag();
break;
case 'LAYR':
this.parseLayer( length );
break;
case 'PNTS':
this.parsePoints( length );
break;
case 'VMAP':
this.parseVertexMapping( length );
break;
case 'POLS':
this.parsePolygonList( length );
break;
case 'TAGS':
this.parseTagStrings( length );
break;
case 'PTAG':
this.parsePolygonTagMapping( length );
break;
case 'VMAD':
this.parseVertexMapping( length, true );
break;
// Misc CHUNKS
case 'DESC': // Description Line
this.currentForm.description = this.reader.getString();
break;
case 'TEXT':
case 'CMNT':
case 'NCOM':
this.currentForm.comment = this.reader.getString();
break;
// Envelope Form
case 'NAME':
this.currentForm.channelName = this.reader.getString();
break;
// Image Map Layer
case 'WRAP':
this.currentForm.wrap = { w: this.reader.getUint16(), h: this.reader.getUint16() };
break;
case 'IMAG':
var index = this.reader.getVariableLengthIndex();
this.currentForm.imageIndex = index;
break;
// Texture Mapping Form
case 'OREF':
this.currentForm.referenceObject = this.reader.getString();
break;
case 'ROID':
this.currentForm.referenceObjectID = this.reader.getUint32();
break;
// Surface Blocks
case 'SSHN':
this.currentSurface.surfaceShaderName = this.reader.getString();
break;
case 'AOVN':
this.currentSurface.surfaceCustomAOVName = this.reader.getString();
break;
// Nodal Blocks
case 'NSTA':
this.currentForm.disabled = this.reader.getUint16();
break;
case 'NRNM':
this.currentForm.realName = this.reader.getString();
break;
case 'NNME':
this.currentForm.refName = this.reader.getString();
this.currentSurface.nodes[ this.currentForm.refName ] = this.currentForm;
break;
// Nodal Blocks : connections
case 'INME':
if ( ! this.currentForm.nodeName ) this.currentForm.nodeName = [];
this.currentForm.nodeName.push( this.reader.getString() );
break;
case 'IINN':
if ( ! this.currentForm.inputNodeName ) this.currentForm.inputNodeName = [];
this.currentForm.inputNodeName.push( this.reader.getString() );
break;
case 'IINM':
if ( ! this.currentForm.inputName ) this.currentForm.inputName = [];
this.currentForm.inputName.push( this.reader.getString() );
break;
case 'IONM':
if ( ! this.currentForm.inputOutputName ) this.currentForm.inputOutputName = [];
this.currentForm.inputOutputName.push( this.reader.getString() );
break;
case 'FNAM':
this.currentForm.fileName = this.reader.getString();
break;
case 'CHAN': // NOTE: ENVL Forms may also have CHAN chunk, however ENVL is currently ignored
if ( length === 4 ) this.currentForm.textureChannel = this.reader.getIDTag();
else this.reader.skip( length );
break;
// LWO2 Spec chunks: these are needed since the SURF FORMs are often in LWO2 format
case 'SMAN':
var maxSmoothingAngle = this.reader.getFloat32();
this.currentSurface.attributes.smooth = ( maxSmoothingAngle < 0 ) ? false : true;
break;
case 'ENAB':
this.currentForm.enabled = this.reader.getUint16();
break;
// LWO2: Basic Surface Parameters
case 'COLR':
this.currentSurface.attributes.color = this.reader.getFloat32Array( 3 );
this.reader.skip( 2 ); // VX: envelope
break;
case 'LUMI':
this.currentSurface.attributes.luminosityLevel = this.reader.getFloat32();
this.reader.skip( 2 );
break;
case 'SPEC':
this.currentSurface.attributes.specularLevel = this.reader.getFloat32();
this.reader.skip( 2 );
break;
case 'REFL':
this.currentSurface.attributes.reflectivity = this.reader.getFloat32();
this.reader.skip( 2 );
break;
case 'TRAN':
this.currentSurface.attributes.opacity = this.reader.getFloat32();
this.reader.skip( 2 );
break;
case 'BUMP':
this.currentSurface.attributes.bumpStrength = this.reader.getFloat32();
this.reader.skip( 2 );
break;
case 'SIDE':
this.currentSurface.attributes.side = this.reader.getUint16();
break;
case 'RIMG':
this.currentSurface.attributes.reflectionMap = this.reader.getVariableLengthIndex();
break;
case 'RIND':
this.currentSurface.attributes.refractiveIndex = this.reader.getFloat32();
this.reader.skip( 2 );
break;
case 'TIMG':
this.currentSurface.attributes.refractionMap = this.reader.getVariableLengthIndex();
break;
case 'IMAP':
this.currentSurface.attributes.imageMapIndex = this.reader.getUint32();
break;
case 'IUVI': // uv channel name
this.currentNode.UVChannel = this.reader.getString( length );
break;
case 'IUTL': // widthWrappingMode: 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge
this.currentNode.widthWrappingMode = this.reader.getUint32();
break;
case 'IVTL': // heightWrappingMode
this.currentNode.heightWrappingMode = this.reader.getUint32();
break;
default:
this.parseUnknownCHUNK( blockID, length );
}
if ( this.reader.offset >= this.currentFormEnd ) {
this.currentForm = this.parentForm;
}
},
///
// FORM PARSING METHODS
///
// Forms are organisational and can contain any number of sub chunks and sub forms
// FORM ::= 'FORM'[ID4], length[U4], type[ID4], ( chunk[CHUNK] | form[FORM] ) * }
parseForm( length ) {
var type = this.reader.getIDTag();
switch ( type ) {
// SKIPPED FORMS
// if skipForm( length ) is called, the entire form and any sub forms and chunks are skipped
case 'ISEQ': // Image sequence
case 'ANIM': // plug in animation
case 'STCC': // Color-cycling Still
case 'VPVL':
case 'VPRM':
case 'NROT':
case 'WRPW': // image wrap w ( for cylindrical and spherical projections)
case 'WRPH': // image wrap h
case 'FUNC':
case 'FALL':
case 'OPAC':
case 'GRAD': // gradient texture
case 'ENVS':
case 'VMOP':
case 'VMBG':
// Car Material FORMS
case 'OMAX':
case 'STEX':
case 'CKBG':
case 'CKEY':
case 'VMLA':
case 'VMLB':
this.skipForm( length ); // not currently supported
break;
// if break; is called directly, the position in the lwoTree is not created
// any sub chunks and forms are added to the parent form instead
case 'META':
case 'NNDS':
case 'NODS':
case 'NDTA':
case 'ADAT':
case 'AOVS':
case 'BLOK':
// used by texture nodes
case 'IBGC': // imageBackgroundColor
case 'IOPC': // imageOpacity
case 'IIMG': // hold reference to image path
case 'TXTR':
// this.setupForm( type, length );
break;
case 'IFAL': // imageFallof
case 'ISCL': // imageScale
case 'IPOS': // imagePosition
case 'IROT': // imageRotation
case 'IBMP':
case 'IUTD':
case 'IVTD':
this.parseTextureNodeAttribute( type );
break;
case 'LWO3':
this.tree.format = type;
break;
case 'ENVL':
this.parseEnvelope( length );
break;
// CLIP FORM AND SUB FORMS
case 'CLIP':
this.parseClip( length );
break;
case 'STIL':
this.parseImage();
break;
case 'XREF': // clone of another STIL
this.reader.skip( 8 ); // unknown
this.currentForm.referenceTexture = {
index: this.reader.getUint32(),
refName: this.reader.getString() // internal unique ref
};
break;
// Not in spec, used by texture nodes
case 'IMST':
this.parseImageStateForm( length );
break;
// SURF FORM AND SUB FORMS
case 'SURF':
this.parseSurfaceForm( length );
break;
case 'VALU': // Not in spec
this.parseValueForm( length );
break;
case 'NTAG':
this.parseSubNode( length );
break;
case 'NNDS':
this.setupForm( 'nodes', length );
break;
case 'ATTR': // BSDF Node Attributes
case 'SATR': // Standard Node Attributes
this.setupForm( 'attributes', length );
break;
case 'NCON':
this.parseConnections( length );
break;
case 'SSHA':
this.parentForm = this.currentForm;
this.currentForm = this.currentSurface;
this.setupForm( 'surfaceShader', length );
break;
case 'SSHD':
this.setupForm( 'surfaceShaderData', length );
break;
case 'ENTR': // Not in spec
this.parseEntryForm( length );
break;
// Image Map Layer
case 'IMAP':
this.parseImageMap( length );
break;
case 'TAMP':
this.parseXVAL( 'amplitude', length );
break;
//Texture Mapping Form
case 'TMAP':
this.setupForm( 'textureMap', length );
break;
case 'CNTR':
this.parseXVAL3( 'center', length );
break;
case 'SIZE':
this.parseXVAL3( 'scale', length );
break;
case 'ROTA':
this.parseXVAL3( 'rotation', length );
break;
default:
this.parseUnknownForm( type, length );
}
},
setupForm( type, length ) {
if ( ! this.currentForm ) this.currentForm = this.currentNode;
this.currentFormEnd = this.reader.offset + length;
this.parentForm = this.currentForm;
if ( ! this.currentForm[ type ] ) {
this.currentForm[ type ] = {};
this.currentForm = this.currentForm[ type ];
} else {
// should never see this unless there's a bug in the reader
console.warn( 'LWOLoader: form already exists on parent: ', type, this.currentForm );
this.currentForm = this.currentForm[ type ];
}
},
skipForm( length ) {
this.reader.skip( length - 4 );
},
parseUnknownForm( type, length ) {
console.warn( 'LWOLoader: unknown FORM encountered: ' + type, length );
printBuffer( this.reader.dv.buffer, this.reader.offset, length - 4 );
this.reader.skip( length - 4 );
},
parseSurfaceForm( length ) {
this.reader.skip( 8 ); // unknown Uint32 x2
var name = this.reader.getString();
var surface = {
attributes: {}, // LWO2 style non-node attributes will go here
connections: {},
name: name,
nodes: {},
source: this.reader.getString(),
};
this.tree.materials[ name ] = surface;
this.currentSurface = surface;
this.parentForm = this.tree.materials;
this.currentForm = surface;
this.currentFormEnd = this.reader.offset + length;
},
parseSubNode( length ) {
// parse the NRNM CHUNK of the subnode FORM to get
// a meaningful name for the subNode
// some subnodes can be renamed, but Input and Surface cannot
this.reader.skip( 8 ); // NRNM + length
var name = this.reader.getString();
var node = {
name: name
};
this.currentForm = node;
this.currentNode = node;
this.currentFormEnd = this.reader.offset + length;
},
// collect attributes from all nodes at the top level of a surface
parseConnections( length ) {
this.currentFormEnd = this.reader.offset + length;
this.parentForm = this.currentForm;
this.currentForm = this.currentSurface.connections;
},
// surface node attribute data, e.g. specular, roughness etc
parseEntryForm( length ) {
this.reader.skip( 8 ); // NAME + length
var name = this.reader.getString();
this.currentForm = this.currentNode.attributes;
this.setupForm( name, length );
},
// parse values from material - doesn't match up to other LWO3 data types
// sub form of entry form
parseValueForm() {
this.reader.skip( 8 ); // unknown + length
var valueType = this.reader.getString();
if ( valueType === 'double' ) {
this.currentForm.value = this.reader.getUint64();
} else if ( valueType === 'int' ) {
this.currentForm.value = this.reader.getUint32();
} else if ( valueType === 'vparam' ) {
this.reader.skip( 24 );
this.currentForm.value = this.reader.getFloat64();
} else if ( valueType === 'vparam3' ) {
this.reader.skip( 24 );
this.currentForm.value = this.reader.getFloat64Array( 3 );
}
},
// holds various data about texture node image state
// Data other thanmipMapLevel unknown
parseImageStateForm() {
this.reader.skip( 8 ); // unknown
this.currentForm.mipMapLevel = this.reader.getFloat32();
},
// LWO2 style image data node OR LWO3 textures defined at top level in editor (not as SURF node)
parseImageMap( length ) {
this.currentFormEnd = this.reader.offset + length;
this.parentForm = this.currentForm;
if ( ! this.currentForm.maps ) this.currentForm.maps = [];
var map = {};
this.currentForm.maps.push( map );
this.currentForm = map;
this.reader.skip( 10 ); // unknown, could be an issue if it contains a VX
},
parseTextureNodeAttribute( type ) {
this.reader.skip( 28 ); // FORM + length + VPRM + unknown + Uint32 x2 + float32
this.reader.skip( 20 ); // FORM + length + VPVL + float32 + Uint32
switch ( type ) {
case 'ISCL':
this.currentNode.scale = this.reader.getFloat32Array( 3 );
break;
case 'IPOS':
this.currentNode.position = this.reader.getFloat32Array( 3 );
break;
case 'IROT':
this.currentNode.rotation = this.reader.getFloat32Array( 3 );
break;
case 'IFAL':
this.currentNode.falloff = this.reader.getFloat32Array( 3 );
break;
case 'IBMP':
this.currentNode.amplitude = this.reader.getFloat32();
break;
case 'IUTD':
this.currentNode.uTiles = this.reader.getFloat32();
break;
case 'IVTD':
this.currentNode.vTiles = this.reader.getFloat32();
break;
}
this.reader.skip( 2 ); // unknown
},
// ENVL forms are currently ignored
parseEnvelope( length ) {
this.reader.skip( length - 4 ); // skipping entirely for now
},
///
// CHUNK PARSING METHODS
///
// clips can either be defined inside a surface node, or at the top
// level and they have a different format in each case
parseClip( length ) {
var tag = this.reader.getIDTag();
// inside surface node
if ( tag === 'FORM' ) {
this.reader.skip( 16 );
this.currentNode.fileName = this.reader.getString();
return;
}
// otherwise top level
this.reader.setOffset( this.reader.offset - 4 );
this.currentFormEnd = this.reader.offset + length;
this.parentForm = this.currentForm;
this.reader.skip( 8 ); // unknown
var texture = {
index: this.reader.getUint32()
};
this.tree.textures.push( texture );
this.currentForm = texture;
},
parseImage() {
this.reader.skip( 8 ); // unknown
this.currentForm.fileName = this.reader.getString();
},
parseXVAL( type, length ) {
var endOffset = this.reader.offset + length - 4;
this.reader.skip( 8 );
this.currentForm[ type ] = this.reader.getFloat32();
this.reader.setOffset( endOffset ); // set end offset directly to skip optional envelope
},
parseXVAL3( type, length ) {
var endOffset = this.reader.offset + length - 4;
this.reader.skip( 8 );
this.currentForm[ type ] = {
x: this.reader.getFloat32(),
y: this.reader.getFloat32(),
z: this.reader.getFloat32(),
};
this.reader.setOffset( endOffset );
},
// Tags associated with an object
// OTAG { type[ID4], tag-string[S0] }
parseObjectTag() {
if ( ! this.tree.objectTags ) this.tree.objectTags = {};
this.tree.objectTags[ this.reader.getIDTag() ] = {
tagString: this.reader.getString()
};
},
// Signals the start of a new layer. All the data chunks which follow will be included in this layer until another layer chunk is encountered.
// LAYR: number[U2], flags[U2], pivot[VEC12], name[S0], parent[U2]
parseLayer( length ) {
var layer = {
number: this.reader.getUint16(),
flags: this.reader.getUint16(), // If the least significant bit of flags is set, the layer is hidden.
pivot: this.reader.getFloat32Array( 3 ), // Note: this seems to be superflous, as the geometry is translated when pivot is present
name: this.reader.getString(),
};
this.tree.layers.push( layer );
this.currentLayer = layer;
var parsedLength = 16 + stringOffset( this.currentLayer.name ); // index ( 2 ) + flags( 2 ) + pivot( 12 ) + stringlength
// if we have not reached then end of the layer block, there must be a parent defined
this.currentLayer.parent = ( parsedLength < length ) ? this.reader.getUint16() : - 1; // omitted or -1 for no parent
},
// VEC12 * ( F4 + F4 + F4 ) array of x,y,z vectors
// Converting from left to right handed coordinate system:
// x -> -x and switch material FrontSide -> BackSide
parsePoints( length ) {
this.currentPoints = [];
for ( var i = 0; i < length / 4; i += 3 ) {
// z -> -z to match three.js right handed coords
this.currentPoints.push( this.reader.getFloat32(), this.reader.getFloat32(), - this.reader.getFloat32() );
}
},
// parse VMAP or VMAD
// Associates a set of floating-point vectors with a set of points.
// VMAP: { type[ID4], dimension[U2], name[S0], ( vert[VX], value[F4] # dimension ) * }
// VMAD Associates a set of floating-point vectors with the vertices of specific polygons.
// Similar to VMAP UVs, but associates with polygon vertices rather than points
// to solve to problem of UV seams: VMAD chunks are paired with VMAPs of the same name,
// if they exist. The vector values in the VMAD will then replace those in the
// corresponding VMAP, but only for calculations involving the specified polygons.
// VMAD { type[ID4], dimension[U2], name[S0], ( vert[VX], poly[VX], value[F4] # dimension ) * }
parseVertexMapping( length, discontinuous ) {
var finalOffset = this.reader.offset + length;
var channelName = this.reader.getString();
if ( this.reader.offset === finalOffset ) {
// then we are in a texture node and the VMAP chunk is just a reference to a UV channel name
this.currentForm.UVChannel = channelName;
return;
}
// otherwise reset to initial length and parse normal VMAP CHUNK
this.reader.setOffset( this.reader.offset - stringOffset( channelName ) );
var type = this.reader.getIDTag();
this.reader.getUint16(); // dimension
var name = this.reader.getString();
var remainingLength = length - 6 - stringOffset( name );
switch ( type ) {
case 'TXUV':
this.parseUVMapping( name, finalOffset, discontinuous );
break;
case 'MORF':
case 'SPOT':
this.parseMorphTargets( name, finalOffset, type ); // can't be discontinuous
break;
// unsupported VMAPs
case 'APSL':
case 'NORM':
case 'WGHT':
case 'MNVW':
case 'PICK':
case 'RGB ':
case 'RGBA':
this.reader.skip( remainingLength );
break;
default:
console.warn( 'LWOLoader: unknown vertex map type: ' + type );
this.reader.skip( remainingLength );
}
},
parseUVMapping( name, finalOffset, discontinuous ) {
var uvIndices = [];
var polyIndices = [];
var uvs = [];
while ( this.reader.offset < finalOffset ) {
uvIndices.push( this.reader.getVariableLengthIndex() );
if ( discontinuous ) polyIndices.push( this.reader.getVariableLengthIndex() );
uvs.push( this.reader.getFloat32(), this.reader.getFloat32() );
}
if ( discontinuous ) {
if ( ! this.currentLayer.discontinuousUVs ) this.currentLayer.discontinuousUVs = {};
this.currentLayer.discontinuousUVs[ name ] = {
uvIndices: uvIndices,
polyIndices: polyIndices,
uvs: uvs,
};
} else {
if ( ! this.currentLayer.uvs ) this.currentLayer.uvs = {};
this.currentLayer.uvs[ name ] = {
uvIndices: uvIndices,
uvs: uvs,
};
}
},
parseMorphTargets( name, finalOffset, type ) {
var indices = [];
var points = [];
type = ( type === 'MORF' ) ? 'relative' : 'absolute';
while ( this.reader.offset < finalOffset ) {
indices.push( this.reader.getVariableLengthIndex() );
// z -> -z to match three.js right handed coords
points.push( this.reader.getFloat32(), this.reader.getFloat32(), - this.reader.getFloat32() );
}
if ( ! this.currentLayer.morphTargets ) this.currentLayer.morphTargets = {};
this.currentLayer.morphTargets[ name ] = {
indices: indices,
points: points,
type: type,
};
},
// A list of polygons for the current layer.
// POLS { type[ID4], ( numvert+flags[U2], vert[VX] # numvert ) * }
parsePolygonList( length ) {
var finalOffset = this.reader.offset + length;
var type = this.reader.getIDTag();
var indices = [];
// hold a list of polygon sizes, to be split up later
var polygonDimensions = [];
while ( this.reader.offset < finalOffset ) {
var numverts = this.reader.getUint16();
//var flags = numverts & 64512; // 6 high order bits are flags - ignoring for now
numverts = numverts & 1023; // remaining ten low order bits are vertex num
polygonDimensions.push( numverts );
for ( var j = 0; j < numverts; j ++ ) indices.push( this.reader.getVariableLengthIndex() );
}
var geometryData = {
type: type,
vertexIndices: indices,
polygonDimensions: polygonDimensions,
points: this.currentPoints
};
// Note: assuming that all polys will be lines or points if the first is
if ( polygonDimensions[ 0 ] === 1 ) geometryData.type = 'points';
else if ( polygonDimensions[ 0 ] === 2 ) geometryData.type = 'lines';
this.currentLayer.geometry = geometryData;
},
// Lists the tag strings that can be associated with polygons by the PTAG chunk.
// TAGS { tag-string[S0] * }
parseTagStrings( length ) {
this.tree.tags = this.reader.getStringArray( length );
},
// Associates tags of a given type with polygons in the most recent POLS chunk.
// PTAG { type[ID4], ( poly[VX], tag[U2] ) * }
parsePolygonTagMapping( length ) {
var finalOffset = this.reader.offset + length;
var type = this.reader.getIDTag();
if ( type === 'SURF' ) this.parseMaterialIndices( finalOffset );
else { //PART, SMGP, COLR not supported
this.reader.skip( length - 4 );
}
},
parseMaterialIndices( finalOffset ) {
// array holds polygon index followed by material index
this.currentLayer.geometry.materialIndices = [];
var initialMatIndex;
while ( this.reader.offset < finalOffset ) {
var polygonIndex = this.reader.getVariableLengthIndex();
var materialIndex = this.reader.getUint16();
if ( ! initialMatIndex ) initialMatIndex = materialIndex; // set up first mat index
this.currentLayer.geometry.materialIndices.push( polygonIndex, materialIndex );
}
},
parseUnknownCHUNK( blockID, length ) {
console.warn( 'LWOLoader: unknown chunk type: ' + blockID + ' length: ' + length );
// print the chunk plus some bytes padding either side
// printBuffer( this.reader.dv.buffer, this.reader.offset - 20, length + 40 );
var data = this.reader.getString( length );
this.currentForm[ blockID ] = data;
}
};
function DataViewReader( buffer ) {
// For testing: dump whole buffer to console as a string
// printBuffer( buffer, 0, buffer.byteLength );
this.dv = new DataView( buffer );
this.offset = 0;
}
DataViewReader.prototype = {
constructor: DataViewReader,
size: function () {
return this.dv.buffer.byteLength;
},
setOffset( offset ) {
if ( offset > 0 && offset < this.dv.buffer.byteLength ) {
this.offset = offset;
} else {
console.error( 'LWOLoader: invalid buffer offset' );
}
},
endOfFile: function () {
if ( this.offset >= this.size() ) return true;
return false;
},
skip: function ( length ) {
this.offset += length;
},
getUint8: function () {
var value = this.dv.getUint8( this.offset );
this.offset += 1;
return value;
},
getUint16: function () {
var value = this.dv.getUint16( this.offset );
this.offset += 2;
return value;
},
getInt32: function () {
var value = this.dv.getInt32( this.offset, false );
this.offset += 4;
return value;
},
getUint32: function () {
var value = this.dv.getUint32( this.offset, false );
this.offset += 4;
return value;
},
getUint64: function () {
var low, high;
high = this.getUint32();
low = this.getUint32();
return high * 0x100000000 + low;
},
getFloat32: function () {
var value = this.dv.getFloat32( this.offset, false );
this.offset += 4;
return value;
},
getFloat32Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getFloat32() );
}
return a;
},
getFloat64: function () {
var value = this.dv.getFloat64( this.offset, this.littleEndian );
this.offset += 8;
return value;
},
getFloat64Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getFloat64() );
}
return a;
},
// get variable-length index data type
// VX ::= index[U2] | (index + 0xFF000000)[U4]
// If the index value is less than 65,280 (0xFF00),then VX === U2
// otherwise VX === U4 with bits 24-31 set
// When reading an index, if the first byte encountered is 255 (0xFF), then
// the four-byte form is being used and the first byte should be discarded or masked out.
getVariableLengthIndex() {
var firstByte = this.getUint8();
if ( firstByte === 255 ) {
return this.getUint8() * 65536 + this.getUint8() * 256 + this.getUint8();
}
return firstByte * 256 + this.getUint8();
},
// An ID tag is a sequence of 4 bytes containing 7-bit ASCII values
getIDTag() {
return this.getString( 4 );
},
getString: function ( size ) {
if ( size === 0 ) return;
// note: safari 9 doesn't support Uint8Array.indexOf; create intermediate array instead
var a = [];
if ( size ) {
for ( var i = 0; i < size; i ++ ) {
a[ i ] = this.getUint8();
}
} else {
var currentChar;
var len = 0;
while ( currentChar !== 0 ) {
currentChar = this.getUint8();
if ( currentChar !== 0 ) a.push( currentChar );
len ++;
}
if ( ! isEven( len + 1 ) ) this.getUint8(); // if string with terminating nullbyte is uneven, extra nullbyte is added
}
return THREE.LoaderUtils.decodeText( new Uint8Array( a ) );
},
getStringArray: function ( size ) {
var a = this.getString( size );
a = a.split( '\0' );
return a.filter( Boolean ); // return array with any empty strings removed
}
};
// ************** UTILITY FUNCTIONS **************
function isEven( num ) {
return num % 2;
}
// calculate the length of the string in the buffer
// this will be string.length + nullbyte + optional padbyte to make the length even
function stringOffset( string ) {
return string.length + 1 + ( isEven( string.length + 1 ) ? 1 : 0 );
}
// for testing purposes, dump buffer to console
// printBuffer( this.reader.dv.buffer, this.reader.offset, length );
function printBuffer( buffer, from, to ) {
console.log( THREE.LoaderUtils.decodeText( new Uint8Array( buffer, from, to ) ) );
}
return LWOLoader;
} )();