web3d / node_modules /three /examples /js /loaders /HDRCubeTextureLoader.js
julien-c's picture
julien-c HF staff
do not gitignore the builds
6cd9596
raw
history blame
5.45 kB
/**
* @author Prashant Sharma / spidersharma03
* @author Ben Houston / http://clara.io / bhouston
*/
THREE.HDRCubeTextureLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
// override in sub classes
this.hdrLoader = new THREE.RGBELoader();
};
THREE.HDRCubeTextureLoader.prototype.load = function ( type, urls, onLoad, onProgress, onError ) {
var RGBEByteToRGBFloat = function ( sourceArray, sourceOffset, destArray, destOffset ) {
var e = sourceArray[ sourceOffset + 3 ];
var scale = Math.pow( 2.0, e - 128.0 ) / 255.0;
destArray[ destOffset + 0 ] = sourceArray[ sourceOffset + 0 ] * scale;
destArray[ destOffset + 1 ] = sourceArray[ sourceOffset + 1 ] * scale;
destArray[ destOffset + 2 ] = sourceArray[ sourceOffset + 2 ] * scale;
};
var RGBEByteToRGBHalf = ( function () {
// Source: http://gamedev.stackexchange.com/questions/17326/conversion-of-a-number-from-single-precision-floating-point-representation-to-a/17410#17410
var floatView = new Float32Array( 1 );
var int32View = new Int32Array( floatView.buffer );
/* This method is faster than the OpenEXR implementation (very often
* used, eg. in Ogre), with the additional benefit of rounding, inspired
* by James Tursa?s half-precision code. */
function toHalf( val ) {
floatView[ 0 ] = val;
var x = int32View[ 0 ];
var bits = ( x >> 16 ) & 0x8000; /* Get the sign */
var m = ( x >> 12 ) & 0x07ff; /* Keep one extra bit for rounding */
var e = ( x >> 23 ) & 0xff; /* Using int is faster here */
/* If zero, or denormal, or exponent underflows too much for a denormal
* half, return signed zero. */
if ( e < 103 ) return bits;
/* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
if ( e > 142 ) {
bits |= 0x7c00;
/* If exponent was 0xff and one mantissa bit was set, it means NaN,
* not Inf, so make sure we set one mantissa bit too. */
bits |= ( ( e == 255 ) ? 0 : 1 ) && ( x & 0x007fffff );
return bits;
}
/* If exponent underflows but not too much, return a denormal */
if ( e < 113 ) {
m |= 0x0800;
/* Extra rounding may overflow and set mantissa to 0 and exponent
* to 1, which is OK. */
bits |= ( m >> ( 114 - e ) ) + ( ( m >> ( 113 - e ) ) & 1 );
return bits;
}
bits |= ( ( e - 112 ) << 10 ) | ( m >> 1 );
/* Extra rounding. An overflow will set mantissa to 0 and increment
* the exponent, which is OK. */
bits += m & 1;
return bits;
}
return function ( sourceArray, sourceOffset, destArray, destOffset ) {
var e = sourceArray[ sourceOffset + 3 ];
var scale = Math.pow( 2.0, e - 128.0 ) / 255.0;
destArray[ destOffset + 0 ] = toHalf( sourceArray[ sourceOffset + 0 ] * scale );
destArray[ destOffset + 1 ] = toHalf( sourceArray[ sourceOffset + 1 ] * scale );
destArray[ destOffset + 2 ] = toHalf( sourceArray[ sourceOffset + 2 ] * scale );
};
} )();
//
var texture = new THREE.CubeTexture();
texture.type = type;
texture.encoding = ( type === THREE.UnsignedByteType ) ? THREE.RGBEEncoding : THREE.LinearEncoding;
texture.format = ( type === THREE.UnsignedByteType ) ? THREE.RGBAFormat : THREE.RGBFormat;
texture.minFilter = ( texture.encoding === THREE.RGBEEncoding ) ? THREE.NearestFilter : THREE.LinearFilter;
texture.magFilter = ( texture.encoding === THREE.RGBEEncoding ) ? THREE.NearestFilter : THREE.LinearFilter;
texture.generateMipmaps = ( texture.encoding !== THREE.RGBEEncoding );
texture.anisotropy = 0;
var scope = this;
var loaded = 0;
function loadHDRData( i, onLoad, onProgress, onError ) {
var loader = new THREE.FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.load( urls[ i ], function ( buffer ) {
loaded ++;
var texData = scope.hdrLoader._parser( buffer );
if ( ! texData ) return;
if ( type === THREE.FloatType ) {
var numElements = ( texData.data.length / 4 ) * 3;
var floatdata = new Float32Array( numElements );
for ( var j = 0; j < numElements; j ++ ) {
RGBEByteToRGBFloat( texData.data, j * 4, floatdata, j * 3 );
}
texData.data = floatdata;
} else if ( type === THREE.HalfFloatType ) {
var numElements = ( texData.data.length / 4 ) * 3;
var halfdata = new Uint16Array( numElements );
for ( var j = 0; j < numElements; j ++ ) {
RGBEByteToRGBHalf( texData.data, j * 4, halfdata, j * 3 );
}
texData.data = halfdata;
}
if ( texData.image !== undefined ) {
texture[ i ].images = texData.image;
} else if ( texData.data !== undefined ) {
var dataTexture = new THREE.DataTexture( texData.data, texData.width, texData.height );
dataTexture.format = texture.format;
dataTexture.type = texture.type;
dataTexture.encoding = texture.encoding;
dataTexture.minFilter = texture.minFilter;
dataTexture.magFilter = texture.magFilter;
dataTexture.generateMipmaps = texture.generateMipmaps;
texture.images[ i ] = dataTexture;
}
if ( loaded === 6 ) {
texture.needsUpdate = true;
if ( onLoad ) onLoad( texture );
}
}, onProgress, onError );
}
for ( var i = 0; i < urls.length; i ++ ) {
loadHDRData( i, onLoad, onProgress, onError );
}
return texture;
};
THREE.HDRCubeTextureLoader.prototype.setPath = function ( value ) {
this.path = value;
return this;
};