julien-c's picture
julien-c HF staff
do not gitignore the builds
6cd9596
raw
history blame
54 kB
/**
* @author Virtulous / https://virtulo.us/
*/
THREE.AssimpLoader = function ( manager ) {
this.manager = ( manager !== undefined ) ? manager : THREE.DefaultLoadingManager;
};
THREE.AssimpLoader.prototype = {
constructor: THREE.AssimpLoader,
crossOrigin: 'anonymous',
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = ( scope.path === undefined ) ? THREE.LoaderUtils.extractUrlBase( url ) : scope.path;
var loader = new THREE.FileLoader( this.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
onLoad( scope.parse( buffer, path ) );
}, onProgress, onError );
},
setPath: function ( value ) {
this.path = value;
return this;
},
setResourcePath: function ( value ) {
this.resourcePath = value;
return this;
},
setCrossOrigin: function ( value ) {
this.crossOrigin = value;
return this;
},
parse: function ( buffer, path ) {
var textureLoader = new THREE.TextureLoader( this.manager );
textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
var Virtulous = {};
Virtulous.KeyFrame = function ( time, matrix ) {
this.time = time;
this.matrix = matrix.clone();
this.position = new THREE.Vector3();
this.quaternion = new THREE.Quaternion();
this.scale = new THREE.Vector3( 1, 1, 1 );
this.matrix.decompose( this.position, this.quaternion, this.scale );
this.clone = function () {
var n = new Virtulous.KeyFrame( this.time, this.matrix );
return n;
};
this.lerp = function ( nextKey, time ) {
time -= this.time;
var dist = ( nextKey.time - this.time );
var l = time / dist;
var l2 = 1 - l;
var keypos = this.position;
var keyrot = this.quaternion;
// var keyscl = key.parentspaceScl || key.scl;
var key2pos = nextKey.position;
var key2rot = nextKey.quaternion;
// var key2scl = key2.parentspaceScl || key2.scl;
Virtulous.KeyFrame.tempAniPos.x = keypos.x * l2 + key2pos.x * l;
Virtulous.KeyFrame.tempAniPos.y = keypos.y * l2 + key2pos.y * l;
Virtulous.KeyFrame.tempAniPos.z = keypos.z * l2 + key2pos.z * l;
// tempAniScale.x = keyscl[0] * l2 + key2scl[0] * l;
// tempAniScale.y = keyscl[1] * l2 + key2scl[1] * l;
// tempAniScale.z = keyscl[2] * l2 + key2scl[2] * l;
Virtulous.KeyFrame.tempAniQuat.set( keyrot.x, keyrot.y, keyrot.z, keyrot.w );
Virtulous.KeyFrame.tempAniQuat.slerp( key2rot, l );
return Virtulous.KeyFrame.tempAniMatrix.compose( Virtulous.KeyFrame.tempAniPos, Virtulous.KeyFrame.tempAniQuat, Virtulous.KeyFrame.tempAniScale );
};
};
Virtulous.KeyFrame.tempAniPos = new THREE.Vector3();
Virtulous.KeyFrame.tempAniQuat = new THREE.Quaternion();
Virtulous.KeyFrame.tempAniScale = new THREE.Vector3( 1, 1, 1 );
Virtulous.KeyFrame.tempAniMatrix = new THREE.Matrix4();
Virtulous.KeyFrameTrack = function () {
this.keys = [];
this.target = null;
this.time = 0;
this.length = 0;
this._accelTable = {};
this.fps = 20;
this.addKey = function ( key ) {
this.keys.push( key );
};
this.init = function () {
this.sortKeys();
if ( this.keys.length > 0 )
this.length = this.keys[ this.keys.length - 1 ].time;
else
this.length = 0;
if ( ! this.fps ) return;
for ( var j = 0; j < this.length * this.fps; j ++ ) {
for ( var i = 0; i < this.keys.length; i ++ ) {
if ( this.keys[ i ].time == j ) {
this._accelTable[ j ] = i;
break;
} else if ( this.keys[ i ].time < j / this.fps && this.keys[ i + 1 ] && this.keys[ i + 1 ].time >= j / this.fps ) {
this._accelTable[ j ] = i;
break;
}
}
}
};
this.parseFromThree = function ( data ) {
var fps = data.fps;
this.target = data.node;
var track = data.hierarchy[ 0 ].keys;
for ( var i = 0; i < track.length; i ++ ) {
this.addKey( new Virtulous.KeyFrame( i / fps || track[ i ].time, track[ i ].targets[ 0 ].data ) );
}
this.init();
};
this.parseFromCollada = function ( data ) {
var track = data.keys;
var fps = this.fps;
for ( var i = 0; i < track.length; i ++ ) {
this.addKey( new Virtulous.KeyFrame( i / fps || track[ i ].time, track[ i ].matrix ) );
}
this.init();
};
this.sortKeys = function () {
this.keys.sort( this.keySortFunc );
};
this.keySortFunc = function ( a, b ) {
return a.time - b.time;
};
this.clone = function () {
var t = new Virtulous.KeyFrameTrack();
t.target = this.target;
t.time = this.time;
t.length = this.length;
for ( var i = 0; i < this.keys.length; i ++ ) {
t.addKey( this.keys[ i ].clone() );
}
t.init();
return t;
};
this.reTarget = function ( root, compareitor ) {
if ( ! compareitor ) compareitor = Virtulous.TrackTargetNodeNameCompare;
this.target = compareitor( root, this.target );
};
this.keySearchAccel = function ( time ) {
time *= this.fps;
time = Math.floor( time );
return this._accelTable[ time ] || 0;
};
this.setTime = function ( time ) {
time = Math.abs( time );
if ( this.length )
time = time % this.length + .05;
var key0 = null;
var key1 = null;
for ( var i = this.keySearchAccel( time ); i < this.keys.length; i ++ ) {
if ( this.keys[ i ].time == time ) {
key0 = this.keys[ i ];
key1 = this.keys[ i ];
break;
} else if ( this.keys[ i ].time < time && this.keys[ i + 1 ] && this.keys[ i + 1 ].time > time ) {
key0 = this.keys[ i ];
key1 = this.keys[ i + 1 ];
break;
} else if ( this.keys[ i ].time < time && i == this.keys.length - 1 ) {
key0 = this.keys[ i ];
key1 = this.keys[ 0 ].clone();
key1.time += this.length + .05;
break;
}
}
if ( key0 && key1 && key0 !== key1 ) {
this.target.matrixAutoUpdate = false;
this.target.matrix.copy( key0.lerp( key1, time ) );
this.target.matrixWorldNeedsUpdate = true;
return;
}
if ( key0 && key1 && key0 == key1 ) {
this.target.matrixAutoUpdate = false;
this.target.matrix.copy( key0.matrix );
this.target.matrixWorldNeedsUpdate = true;
return;
}
};
};
Virtulous.TrackTargetNodeNameCompare = function ( root, target ) {
function find( node, name ) {
if ( node.name == name )
return node;
for ( var i = 0; i < node.children.length; i ++ ) {
var r = find( node.children[ i ], name );
if ( r ) return r;
}
return null;
}
return find( root, target.name );
};
Virtulous.Animation = function () {
this.tracks = [];
this.length = 0;
this.addTrack = function ( track ) {
this.tracks.push( track );
this.length = Math.max( track.length, this.length );
};
this.setTime = function ( time ) {
this.time = time;
for ( var i = 0; i < this.tracks.length; i ++ )
this.tracks[ i ].setTime( time );
};
this.clone = function ( target, compareitor ) {
if ( ! compareitor ) compareitor = Virtulous.TrackTargetNodeNameCompare;
var n = new Virtulous.Animation();
n.target = target;
for ( var i = 0; i < this.tracks.length; i ++ ) {
var track = this.tracks[ i ].clone();
track.reTarget( target, compareitor );
n.addTrack( track );
}
return n;
};
};
var ASSBIN_CHUNK_AICAMERA = 0x1234;
var ASSBIN_CHUNK_AILIGHT = 0x1235;
var ASSBIN_CHUNK_AITEXTURE = 0x1236;
var ASSBIN_CHUNK_AIMESH = 0x1237;
var ASSBIN_CHUNK_AINODEANIM = 0x1238;
var ASSBIN_CHUNK_AISCENE = 0x1239;
var ASSBIN_CHUNK_AIBONE = 0x123a;
var ASSBIN_CHUNK_AIANIMATION = 0x123b;
var ASSBIN_CHUNK_AINODE = 0x123c;
var ASSBIN_CHUNK_AIMATERIAL = 0x123d;
var ASSBIN_CHUNK_AIMATERIALPROPERTY = 0x123e;
var ASSBIN_MESH_HAS_POSITIONS = 0x1;
var ASSBIN_MESH_HAS_NORMALS = 0x2;
var ASSBIN_MESH_HAS_TANGENTS_AND_BITANGENTS = 0x4;
var ASSBIN_MESH_HAS_TEXCOORD_BASE = 0x100;
var ASSBIN_MESH_HAS_COLOR_BASE = 0x10000;
var AI_MAX_NUMBER_OF_COLOR_SETS = 1;
var AI_MAX_NUMBER_OF_TEXTURECOORDS = 4;
var aiLightSource_UNDEFINED = 0x0;
//! A directional light source has a well-defined direction
//! but is infinitely far away. That's quite a good
//! approximation for sun light.
var aiLightSource_DIRECTIONAL = 0x1;
//! A point light source has a well-defined position
//! in space but no direction - it emits light in all
//! directions. A normal bulb is a point light.
var aiLightSource_POINT = 0x2;
//! A spot light source emits light in a specific
//! angle. It has a position and a direction it is pointing to.
//! A good example for a spot light is a light spot in
//! sport arenas.
var aiLightSource_SPOT = 0x3;
//! The generic light level of the world, including the bounces
//! of all other lightsources.
//! Typically, there's at most one ambient light in a scene.
//! This light type doesn't have a valid position, direction, or
//! other properties, just a color.
var aiLightSource_AMBIENT = 0x4;
/** Flat shading. Shading is done on per-face base,
* diffuse only. Also known as 'faceted shading'.
*/
var aiShadingMode_Flat = 0x1;
/** Simple Gouraud shading.
*/
var aiShadingMode_Gouraud = 0x2;
/** Phong-Shading -
*/
var aiShadingMode_Phong = 0x3;
/** Phong-Blinn-Shading
*/
var aiShadingMode_Blinn = 0x4;
/** Toon-Shading per pixel
*
* Also known as 'comic' shader.
*/
var aiShadingMode_Toon = 0x5;
/** OrenNayar-Shading per pixel
*
* Extension to standard Lambertian shading, taking the
* roughness of the material into account
*/
var aiShadingMode_OrenNayar = 0x6;
/** Minnaert-Shading per pixel
*
* Extension to standard Lambertian shading, taking the
* "darkness" of the material into account
*/
var aiShadingMode_Minnaert = 0x7;
/** CookTorrance-Shading per pixel
*
* Special shader for metallic surfaces.
*/
var aiShadingMode_CookTorrance = 0x8;
/** No shading at all. Constant light influence of 1.0.
*/
var aiShadingMode_NoShading = 0x9;
/** Fresnel shading
*/
var aiShadingMode_Fresnel = 0xa;
var aiTextureType_NONE = 0x0;
/** The texture is combined with the result of the diffuse
* lighting equation.
*/
var aiTextureType_DIFFUSE = 0x1;
/** The texture is combined with the result of the specular
* lighting equation.
*/
var aiTextureType_SPECULAR = 0x2;
/** The texture is combined with the result of the ambient
* lighting equation.
*/
var aiTextureType_AMBIENT = 0x3;
/** The texture is added to the result of the lighting
* calculation. It isn't influenced by incoming light.
*/
var aiTextureType_EMISSIVE = 0x4;
/** The texture is a height map.
*
* By convention, higher gray-scale values stand for
* higher elevations from the base height.
*/
var aiTextureType_HEIGHT = 0x5;
/** The texture is a (tangent space) normal-map.
*
* Again, there are several conventions for tangent-space
* normal maps. Assimp does (intentionally) not
* distinguish here.
*/
var aiTextureType_NORMALS = 0x6;
/** The texture defines the glossiness of the material.
*
* The glossiness is in fact the exponent of the specular
* (phong) lighting equation. Usually there is a conversion
* function defined to map the linear color values in the
* texture to a suitable exponent. Have fun.
*/
var aiTextureType_SHININESS = 0x7;
/** The texture defines per-pixel opacity.
*
* Usually 'white' means opaque and 'black' means
* 'transparency'. Or quite the opposite. Have fun.
*/
var aiTextureType_OPACITY = 0x8;
/** Displacement texture
*
* The exact purpose and format is application-dependent.
* Higher color values stand for higher vertex displacements.
*/
var aiTextureType_DISPLACEMENT = 0x9;
/** Lightmap texture (aka Ambient Occlusion)
*
* Both 'Lightmaps' and dedicated 'ambient occlusion maps' are
* covered by this material property. The texture contains a
* scaling value for the final color value of a pixel. Its
* intensity is not affected by incoming light.
*/
var aiTextureType_LIGHTMAP = 0xA;
/** Reflection texture
*
* Contains the color of a perfect mirror reflection.
* Rarely used, almost never for real-time applications.
*/
var aiTextureType_REFLECTION = 0xB;
/** Unknown texture
*
* A texture reference that does not match any of the definitions
* above is considered to be 'unknown'. It is still imported,
* but is excluded from any further postprocessing.
*/
var aiTextureType_UNKNOWN = 0xC;
var BONESPERVERT = 4;
function ASSBIN_MESH_HAS_TEXCOORD( n ) {
return ASSBIN_MESH_HAS_TEXCOORD_BASE << n;
}
function ASSBIN_MESH_HAS_COLOR( n ) {
return ASSBIN_MESH_HAS_COLOR_BASE << n;
}
function markBones( scene ) {
for ( var i in scene.mMeshes ) {
var mesh = scene.mMeshes[ i ];
for ( var k in mesh.mBones ) {
var boneNode = scene.findNode( mesh.mBones[ k ].mName );
if ( boneNode )
boneNode.isBone = true;
}
}
}
function cloneTreeToBones( root, scene ) {
var rootBone = new THREE.Bone();
rootBone.matrix.copy( root.matrix );
rootBone.matrixWorld.copy( root.matrixWorld );
rootBone.position.copy( root.position );
rootBone.quaternion.copy( root.quaternion );
rootBone.scale.copy( root.scale );
scene.nodeCount ++;
rootBone.name = "bone_" + root.name + scene.nodeCount.toString();
if ( ! scene.nodeToBoneMap[ root.name ] )
scene.nodeToBoneMap[ root.name ] = [];
scene.nodeToBoneMap[ root.name ].push( rootBone );
for ( var i in root.children ) {
var child = cloneTreeToBones( root.children[ i ], scene );
if ( child )
rootBone.add( child );
}
return rootBone;
}
function sortWeights( indexes, weights ) {
var pairs = [];
for ( var i = 0; i < indexes.length; i ++ ) {
pairs.push( {
i: indexes[ i ],
w: weights[ i ]
} );
}
pairs.sort( function ( a, b ) {
return b.w - a.w;
} );
while ( pairs.length < 4 ) {
pairs.push( {
i: 0,
w: 0
} );
}
if ( pairs.length > 4 )
pairs.length = 4;
var sum = 0;
for ( var i = 0; i < 4; i ++ ) {
sum += pairs[ i ].w * pairs[ i ].w;
}
sum = Math.sqrt( sum );
for ( var i = 0; i < 4; i ++ ) {
pairs[ i ].w = pairs[ i ].w / sum;
indexes[ i ] = pairs[ i ].i;
weights[ i ] = pairs[ i ].w;
}
}
function findMatchingBone( root, name ) {
if ( root.name.indexOf( "bone_" + name ) == 0 )
return root;
for ( var i in root.children ) {
var ret = findMatchingBone( root.children[ i ], name );
if ( ret )
return ret;
}
return undefined;
}
function aiMesh() {
this.mPrimitiveTypes = 0;
this.mNumVertices = 0;
this.mNumFaces = 0;
this.mNumBones = 0;
this.mMaterialIndex = 0;
this.mVertices = [];
this.mNormals = [];
this.mTangents = [];
this.mBitangents = [];
this.mColors = [
[]
];
this.mTextureCoords = [
[]
];
this.mFaces = [];
this.mBones = [];
this.hookupSkeletons = function ( scene, threeScene ) {
if ( this.mBones.length == 0 ) return;
var allBones = [];
var offsetMatrix = [];
var skeletonRoot = scene.findNode( this.mBones[ 0 ].mName );
while ( skeletonRoot.mParent && skeletonRoot.mParent.isBone ) {
skeletonRoot = skeletonRoot.mParent;
}
var threeSkeletonRoot = skeletonRoot.toTHREE( scene );
var threeSkeletonRootBone = cloneTreeToBones( threeSkeletonRoot, scene );
this.threeNode.add( threeSkeletonRootBone );
for ( var i = 0; i < this.mBones.length; i ++ ) {
var bone = findMatchingBone( threeSkeletonRootBone, this.mBones[ i ].mName );
if ( bone ) {
var tbone = bone;
allBones.push( tbone );
//tbone.matrixAutoUpdate = false;
offsetMatrix.push( this.mBones[ i ].mOffsetMatrix.toTHREE() );
} else {
var skeletonRoot = scene.findNode( this.mBones[ i ].mName );
if ( ! skeletonRoot ) return;
var threeSkeletonRoot = skeletonRoot.toTHREE( scene );
var threeSkeletonRootParent = threeSkeletonRoot.parent;
var threeSkeletonRootBone = cloneTreeToBones( threeSkeletonRoot, scene );
this.threeNode.add( threeSkeletonRootBone );
var bone = findMatchingBone( threeSkeletonRootBone, this.mBones[ i ].mName );
var tbone = bone;
allBones.push( tbone );
//tbone.matrixAutoUpdate = false;
offsetMatrix.push( this.mBones[ i ].mOffsetMatrix.toTHREE() );
}
}
var skeleton = new THREE.Skeleton( allBones, offsetMatrix );
this.threeNode.bind( skeleton, new THREE.Matrix4() );
this.threeNode.material.skinning = true;
};
this.toTHREE = function ( scene ) {
if ( this.threeNode ) return this.threeNode;
var geometry = new THREE.BufferGeometry();
var mat;
if ( scene.mMaterials[ this.mMaterialIndex ] )
mat = scene.mMaterials[ this.mMaterialIndex ].toTHREE( scene );
else
mat = new THREE.MeshLambertMaterial();
geometry.setIndex( new THREE.BufferAttribute( new Uint32Array( this.mIndexArray ), 1 ) );
geometry.addAttribute( 'position', new THREE.BufferAttribute( this.mVertexBuffer, 3 ) );
if ( this.mNormalBuffer && this.mNormalBuffer.length > 0 )
geometry.addAttribute( 'normal', new THREE.BufferAttribute( this.mNormalBuffer, 3 ) );
if ( this.mColorBuffer && this.mColorBuffer.length > 0 )
geometry.addAttribute( 'color', new THREE.BufferAttribute( this.mColorBuffer, 4 ) );
if ( this.mTexCoordsBuffers[ 0 ] && this.mTexCoordsBuffers[ 0 ].length > 0 )
geometry.addAttribute( 'uv', new THREE.BufferAttribute( new Float32Array( this.mTexCoordsBuffers[ 0 ] ), 2 ) );
if ( this.mTexCoordsBuffers[ 1 ] && this.mTexCoordsBuffers[ 1 ].length > 0 )
geometry.addAttribute( 'uv1', new THREE.BufferAttribute( new Float32Array( this.mTexCoordsBuffers[ 1 ] ), 2 ) );
if ( this.mTangentBuffer && this.mTangentBuffer.length > 0 )
geometry.addAttribute( 'tangents', new THREE.BufferAttribute( this.mTangentBuffer, 3 ) );
if ( this.mBitangentBuffer && this.mBitangentBuffer.length > 0 )
geometry.addAttribute( 'bitangents', new THREE.BufferAttribute( this.mBitangentBuffer, 3 ) );
if ( this.mBones.length > 0 ) {
var weights = [];
var bones = [];
for ( var i = 0; i < this.mBones.length; i ++ ) {
for ( var j = 0; j < this.mBones[ i ].mWeights.length; j ++ ) {
var weight = this.mBones[ i ].mWeights[ j ];
if ( weight ) {
if ( ! weights[ weight.mVertexId ] ) weights[ weight.mVertexId ] = [];
if ( ! bones[ weight.mVertexId ] ) bones[ weight.mVertexId ] = [];
weights[ weight.mVertexId ].push( weight.mWeight );
bones[ weight.mVertexId ].push( parseInt( i ) );
}
}
}
for ( var i in bones ) {
sortWeights( bones[ i ], weights[ i ] );
}
var _weights = [];
var _bones = [];
for ( var i = 0; i < weights.length; i ++ ) {
for ( var j = 0; j < 4; j ++ ) {
if ( weights[ i ] && bones[ i ] ) {
_weights.push( weights[ i ][ j ] );
_bones.push( bones[ i ][ j ] );
} else {
_weights.push( 0 );
_bones.push( 0 );
}
}
}
geometry.addAttribute( 'skinWeight', new THREE.BufferAttribute( new Float32Array( _weights ), BONESPERVERT ) );
geometry.addAttribute( 'skinIndex', new THREE.BufferAttribute( new Float32Array( _bones ), BONESPERVERT ) );
}
var mesh;
if ( this.mBones.length == 0 )
mesh = new THREE.Mesh( geometry, mat );
if ( this.mBones.length > 0 ) {
mesh = new THREE.SkinnedMesh( geometry, mat );
mesh.normalizeSkinWeights();
}
this.threeNode = mesh;
//mesh.matrixAutoUpdate = false;
return mesh;
};
}
function aiFace() {
this.mNumIndices = 0;
this.mIndices = [];
}
function aiVector3D() {
this.x = 0;
this.y = 0;
this.z = 0;
this.toTHREE = function () {
return new THREE.Vector3( this.x, this.y, this.z );
};
}
function aiVector2D() {
this.x = 0;
this.y = 0;
this.toTHREE = function () {
return new THREE.Vector2( this.x, this.y );
};
}
function aiVector4D() {
this.w = 0;
this.x = 0;
this.y = 0;
this.z = 0;
this.toTHREE = function () {
return new THREE.Vector4( this.w, this.x, this.y, this.z );
};
}
function aiColor4D() {
this.r = 0;
this.g = 0;
this.b = 0;
this.a = 0;
this.toTHREE = function () {
return new THREE.Color( this.r, this.g, this.b, this.a );
};
}
function aiColor3D() {
this.r = 0;
this.g = 0;
this.b = 0;
this.a = 0;
this.toTHREE = function () {
return new THREE.Color( this.r, this.g, this.b, 1 );
};
}
function aiQuaternion() {
this.x = 0;
this.y = 0;
this.z = 0;
this.w = 0;
this.toTHREE = function () {
return new THREE.Quaternion( this.x, this.y, this.z, this.w );
};
}
function aiVertexWeight() {
this.mVertexId = 0;
this.mWeight = 0;
}
function aiString() {
this.data = [];
this.toString = function () {
var str = '';
this.data.forEach( function ( i ) {
str += ( String.fromCharCode( i ) );
} );
return str.replace( /[^\x20-\x7E]+/g, '' );
};
}
function aiVectorKey() {
this.mTime = 0;
this.mValue = null;
}
function aiQuatKey() {
this.mTime = 0;
this.mValue = null;
}
function aiNode() {
this.mName = '';
this.mTransformation = [];
this.mNumChildren = 0;
this.mNumMeshes = 0;
this.mMeshes = [];
this.mChildren = [];
this.toTHREE = function ( scene ) {
if ( this.threeNode ) return this.threeNode;
var o = new THREE.Object3D();
o.name = this.mName;
o.matrix = this.mTransformation.toTHREE();
for ( var i = 0; i < this.mChildren.length; i ++ ) {
o.add( this.mChildren[ i ].toTHREE( scene ) );
}
for ( var i = 0; i < this.mMeshes.length; i ++ ) {
o.add( scene.mMeshes[ this.mMeshes[ i ] ].toTHREE( scene ) );
}
this.threeNode = o;
//o.matrixAutoUpdate = false;
o.matrix.decompose( o.position, o.quaternion, o.scale );
return o;
};
}
function aiBone() {
this.mName = '';
this.mNumWeights = 0;
this.mOffsetMatrix = 0;
}
function aiMaterialProperty() {
this.mKey = "";
this.mSemantic = 0;
this.mIndex = 0;
this.mData = [];
this.mDataLength = 0;
this.mType = 0;
this.dataAsColor = function () {
var array = ( new Uint8Array( this.mData ) ).buffer;
var reader = new DataView( array );
var r = reader.getFloat32( 0, true );
var g = reader.getFloat32( 4, true );
var b = reader.getFloat32( 8, true );
//var a = reader.getFloat32(12, true);
return new THREE.Color( r, g, b );
};
this.dataAsFloat = function () {
var array = ( new Uint8Array( this.mData ) ).buffer;
var reader = new DataView( array );
var r = reader.getFloat32( 0, true );
return r;
};
this.dataAsBool = function () {
var array = ( new Uint8Array( this.mData ) ).buffer;
var reader = new DataView( array );
var r = reader.getFloat32( 0, true );
return !! r;
};
this.dataAsString = function () {
var s = new aiString();
s.data = this.mData;
return s.toString();
};
this.dataAsMap = function () {
var s = new aiString();
s.data = this.mData;
var path = s.toString();
path = path.replace( /\\/g, '/' );
if ( path.indexOf( '/' ) != - 1 ) {
path = path.substr( path.lastIndexOf( '/' ) + 1 );
}
return textureLoader.load( path );
};
}
var namePropMapping = {
"?mat.name": "name",
"$mat.shadingm": "shading",
"$mat.twosided": "twoSided",
"$mat.wireframe": "wireframe",
"$clr.ambient": "ambient",
"$clr.diffuse": "color",
"$clr.specular": "specular",
"$clr.emissive": "emissive",
"$clr.transparent": "transparent",
"$clr.reflective": "reflect",
"$mat.shininess": "shininess",
"$mat.reflectivity": "reflectivity",
"$mat.refracti": "refraction",
"$tex.file": "map"
};
var nameTypeMapping = {
"?mat.name": "string",
"$mat.shadingm": "bool",
"$mat.twosided": "bool",
"$mat.wireframe": "bool",
"$clr.ambient": "color",
"$clr.diffuse": "color",
"$clr.specular": "color",
"$clr.emissive": "color",
"$clr.transparent": "color",
"$clr.reflective": "color",
"$mat.shininess": "float",
"$mat.reflectivity": "float",
"$mat.refracti": "float",
"$tex.file": "map"
};
function aiMaterial() {
this.mNumAllocated = 0;
this.mNumProperties = 0;
this.mProperties = [];
this.toTHREE = function ( scene ) {
var name = this.mProperties[ 0 ].dataAsString();
var mat = new THREE.MeshPhongMaterial();
for ( var i = 0; i < this.mProperties.length; i ++ ) {
if ( nameTypeMapping[ this.mProperties[ i ].mKey ] == 'float' )
mat[ namePropMapping[ this.mProperties[ i ].mKey ] ] = this.mProperties[ i ].dataAsFloat();
if ( nameTypeMapping[ this.mProperties[ i ].mKey ] == 'color' )
mat[ namePropMapping[ this.mProperties[ i ].mKey ] ] = this.mProperties[ i ].dataAsColor();
if ( nameTypeMapping[ this.mProperties[ i ].mKey ] == 'bool' )
mat[ namePropMapping[ this.mProperties[ i ].mKey ] ] = this.mProperties[ i ].dataAsBool();
if ( nameTypeMapping[ this.mProperties[ i ].mKey ] == 'string' )
mat[ namePropMapping[ this.mProperties[ i ].mKey ] ] = this.mProperties[ i ].dataAsString();
if ( nameTypeMapping[ this.mProperties[ i ].mKey ] == 'map' ) {
var prop = this.mProperties[ i ];
if ( prop.mSemantic == aiTextureType_DIFFUSE )
mat.map = this.mProperties[ i ].dataAsMap();
if ( prop.mSemantic == aiTextureType_NORMALS )
mat.normalMap = this.mProperties[ i ].dataAsMap();
if ( prop.mSemantic == aiTextureType_LIGHTMAP )
mat.lightMap = this.mProperties[ i ].dataAsMap();
if ( prop.mSemantic == aiTextureType_OPACITY )
mat.alphaMap = this.mProperties[ i ].dataAsMap();
}
}
mat.ambient.r = .53;
mat.ambient.g = .53;
mat.ambient.b = .53;
mat.color.r = 1;
mat.color.g = 1;
mat.color.b = 1;
return mat;
};
}
function veclerp( v1, v2, l ) {
var v = new THREE.Vector3();
var lm1 = 1 - l;
v.x = v1.x * l + v2.x * lm1;
v.y = v1.y * l + v2.y * lm1;
v.z = v1.z * l + v2.z * lm1;
return v;
}
function quatlerp( q1, q2, l ) {
return q1.clone().slerp( q2, 1 - l );
}
function sampleTrack( keys, time, lne, lerp ) {
if ( keys.length == 1 ) return keys[ 0 ].mValue.toTHREE();
var dist = Infinity;
var key = null;
var nextKey = null;
for ( var i = 0; i < keys.length; i ++ ) {
var timeDist = Math.abs( keys[ i ].mTime - time );
if ( timeDist < dist && keys[ i ].mTime <= time ) {
dist = timeDist;
key = keys[ i ];
nextKey = keys[ i + 1 ];
}
}
if ( ! key ) {
return null;
} else if ( nextKey ) {
var dT = nextKey.mTime - key.mTime;
var T = key.mTime - time;
var l = T / dT;
return lerp( key.mValue.toTHREE(), nextKey.mValue.toTHREE(), l );
} else {
nextKey = keys[ 0 ].clone();
nextKey.mTime += lne;
var dT = nextKey.mTime - key.mTime;
var T = key.mTime - time;
var l = T / dT;
return lerp( key.mValue.toTHREE(), nextKey.mValue.toTHREE(), l );
}
}
function aiNodeAnim() {
this.mNodeName = "";
this.mNumPositionKeys = 0;
this.mNumRotationKeys = 0;
this.mNumScalingKeys = 0;
this.mPositionKeys = [];
this.mRotationKeys = [];
this.mScalingKeys = [];
this.mPreState = "";
this.mPostState = "";
this.init = function ( tps ) {
if ( ! tps ) tps = 1;
function t( t ) {
t.mTime /= tps;
}
this.mPositionKeys.forEach( t );
this.mRotationKeys.forEach( t );
this.mScalingKeys.forEach( t );
};
this.sortKeys = function () {
function comp( a, b ) {
return a.mTime - b.mTime;
}
this.mPositionKeys.sort( comp );
this.mRotationKeys.sort( comp );
this.mScalingKeys.sort( comp );
};
this.getLength = function () {
return Math.max(
Math.max.apply( null, this.mPositionKeys.map( function ( a ) {
return a.mTime;
} ) ),
Math.max.apply( null, this.mRotationKeys.map( function ( a ) {
return a.mTime;
} ) ),
Math.max.apply( null, this.mScalingKeys.map( function ( a ) {
return a.mTime;
} ) )
);
};
this.toTHREE = function ( o, tps ) {
this.sortKeys();
var length = this.getLength();
var track = new Virtulous.KeyFrameTrack();
for ( var i = 0; i < length; i += .05 ) {
var matrix = new THREE.Matrix4();
var time = i;
var pos = sampleTrack( this.mPositionKeys, time, length, veclerp );
var scale = sampleTrack( this.mScalingKeys, time, length, veclerp );
var rotation = sampleTrack( this.mRotationKeys, time, length, quatlerp );
matrix.compose( pos, rotation, scale );
var key = new Virtulous.KeyFrame( time, matrix );
track.addKey( key );
}
track.target = o.findNode( this.mNodeName ).toTHREE();
var tracks = [ track ];
if ( o.nodeToBoneMap[ this.mNodeName ] ) {
for ( var i = 0; i < o.nodeToBoneMap[ this.mNodeName ].length; i ++ ) {
var t2 = track.clone();
t2.target = o.nodeToBoneMap[ this.mNodeName ][ i ];
tracks.push( t2 );
}
}
return tracks;
};
}
function aiAnimation() {
this.mName = "";
this.mDuration = 0;
this.mTicksPerSecond = 0;
this.mNumChannels = 0;
this.mChannels = [];
this.toTHREE = function ( root ) {
var animationHandle = new Virtulous.Animation();
for ( var i in this.mChannels ) {
this.mChannels[ i ].init( this.mTicksPerSecond );
var tracks = this.mChannels[ i ].toTHREE( root );
for ( var j in tracks ) {
tracks[ j ].init();
animationHandle.addTrack( tracks[ j ] );
}
}
animationHandle.length = Math.max.apply( null, animationHandle.tracks.map( function ( e ) {
return e.length;
} ) );
return animationHandle;
};
}
function aiTexture() {
this.mWidth = 0;
this.mHeight = 0;
this.texAchFormatHint = [];
this.pcData = [];
}
function aiLight() {
this.mName = '';
this.mType = 0;
this.mAttenuationConstant = 0;
this.mAttenuationLinear = 0;
this.mAttenuationQuadratic = 0;
this.mAngleInnerCone = 0;
this.mAngleOuterCone = 0;
this.mColorDiffuse = null;
this.mColorSpecular = null;
this.mColorAmbient = null;
}
function aiCamera() {
this.mName = '';
this.mPosition = null;
this.mLookAt = null;
this.mUp = null;
this.mHorizontalFOV = 0;
this.mClipPlaneNear = 0;
this.mClipPlaneFar = 0;
this.mAspect = 0;
}
function aiScene() {
this.mFlags = 0;
this.mNumMeshes = 0;
this.mNumMaterials = 0;
this.mNumAnimations = 0;
this.mNumTextures = 0;
this.mNumLights = 0;
this.mNumCameras = 0;
this.mRootNode = null;
this.mMeshes = [];
this.mMaterials = [];
this.mAnimations = [];
this.mLights = [];
this.mCameras = [];
this.nodeToBoneMap = {};
this.findNode = function ( name, root ) {
if ( ! root ) {
root = this.mRootNode;
}
if ( root.mName == name ) {
return root;
}
for ( var i = 0; i < root.mChildren.length; i ++ ) {
var ret = this.findNode( name, root.mChildren[ i ] );
if ( ret ) return ret;
}
return null;
};
this.toTHREE = function () {
this.nodeCount = 0;
markBones( this );
var o = this.mRootNode.toTHREE( this );
for ( var i in this.mMeshes )
this.mMeshes[ i ].hookupSkeletons( this, o );
if ( this.mAnimations.length > 0 ) {
var a = this.mAnimations[ 0 ].toTHREE( this );
}
return { object: o, animation: a };
};
}
function aiMatrix4() {
this.elements = [
[],
[],
[],
[]
];
this.toTHREE = function () {
var m = new THREE.Matrix4();
for ( var i = 0; i < 4; ++ i ) {
for ( var i2 = 0; i2 < 4; ++ i2 ) {
m.elements[ i * 4 + i2 ] = this.elements[ i2 ][ i ];
}
}
return m;
};
}
var littleEndian = true;
function readFloat( dataview ) {
var val = dataview.getFloat32( dataview.readOffset, littleEndian );
dataview.readOffset += 4;
return val;
}
function Read_double( dataview ) {
var val = dataview.getFloat64( dataview.readOffset, littleEndian );
dataview.readOffset += 8;
return val;
}
function Read_uint8_t( dataview ) {
var val = dataview.getUint8( dataview.readOffset );
dataview.readOffset += 1;
return val;
}
function Read_uint16_t( dataview ) {
var val = dataview.getUint16( dataview.readOffset, littleEndian );
dataview.readOffset += 2;
return val;
}
function Read_unsigned_int( dataview ) {
var val = dataview.getUint32( dataview.readOffset, littleEndian );
dataview.readOffset += 4;
return val;
}
function Read_uint32_t( dataview ) {
var val = dataview.getUint32( dataview.readOffset, littleEndian );
dataview.readOffset += 4;
return val;
}
function Read_aiVector3D( stream ) {
var v = new aiVector3D();
v.x = readFloat( stream );
v.y = readFloat( stream );
v.z = readFloat( stream );
return v;
}
function Read_aiVector2D( stream ) {
var v = new aiVector2D();
v.x = readFloat( stream );
v.y = readFloat( stream );
return v;
}
function Read_aiVector4D( stream ) {
var v = new aiVector4D();
v.w = readFloat( stream );
v.x = readFloat( stream );
v.y = readFloat( stream );
v.z = readFloat( stream );
return v;
}
function Read_aiColor3D( stream ) {
var c = new aiColor3D();
c.r = readFloat( stream );
c.g = readFloat( stream );
c.b = readFloat( stream );
return c;
}
function Read_aiColor4D( stream ) {
var c = new aiColor4D();
c.r = readFloat( stream );
c.g = readFloat( stream );
c.b = readFloat( stream );
c.a = readFloat( stream );
return c;
}
function Read_aiQuaternion( stream ) {
var v = new aiQuaternion();
v.w = readFloat( stream );
v.x = readFloat( stream );
v.y = readFloat( stream );
v.z = readFloat( stream );
return v;
}
function Read_aiString( stream ) {
var s = new aiString();
var stringlengthbytes = Read_unsigned_int( stream );
stream.ReadBytes( s.data, 1, stringlengthbytes );
return s.toString();
}
function Read_aiVertexWeight( stream ) {
var w = new aiVertexWeight();
w.mVertexId = Read_unsigned_int( stream );
w.mWeight = readFloat( stream );
return w;
}
function Read_aiMatrix4x4( stream ) {
var m = new aiMatrix4();
for ( var i = 0; i < 4; ++ i ) {
for ( var i2 = 0; i2 < 4; ++ i2 ) {
m.elements[ i ][ i2 ] = readFloat( stream );
}
}
return m;
}
function Read_aiVectorKey( stream ) {
var v = new aiVectorKey();
v.mTime = Read_double( stream );
v.mValue = Read_aiVector3D( stream );
return v;
}
function Read_aiQuatKey( stream ) {
var v = new aiQuatKey();
v.mTime = Read_double( stream );
v.mValue = Read_aiQuaternion( stream );
return v;
}
function ReadArray( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read( stream );
}
function ReadArray_aiVector2D( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read_aiVector2D( stream );
}
function ReadArray_aiVector3D( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read_aiVector3D( stream );
}
function ReadArray_aiVector4D( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read_aiVector4D( stream );
}
function ReadArray_aiVertexWeight( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read_aiVertexWeight( stream );
}
function ReadArray_aiColor4D( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read_aiColor4D( stream );
}
function ReadArray_aiVectorKey( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read_aiVectorKey( stream );
}
function ReadArray_aiQuatKey( stream, data, size ) {
for ( var i = 0; i < size; i ++ ) data[ i ] = Read_aiQuatKey( stream );
}
function ReadBounds( stream, T /*p*/, n ) {
// not sure what to do here, the data isn't really useful.
return stream.Seek( sizeof( T ) * n, aiOrigin_CUR );
}
function ai_assert( bool ) {
if ( ! bool )
throw ( "asset failed" );
}
function ReadBinaryNode( stream, parent, depth ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AINODE );
/*uint32_t size =*/
Read_uint32_t( stream );
var node = new aiNode();
node.mParent = parent;
node.mDepth = depth;
node.mName = Read_aiString( stream );
node.mTransformation = Read_aiMatrix4x4( stream );
node.mNumChildren = Read_unsigned_int( stream );
node.mNumMeshes = Read_unsigned_int( stream );
if ( node.mNumMeshes ) {
node.mMeshes = [];
for ( var i = 0; i < node.mNumMeshes; ++ i ) {
node.mMeshes[ i ] = Read_unsigned_int( stream );
}
}
if ( node.mNumChildren ) {
node.mChildren = [];
for ( var i = 0; i < node.mNumChildren; ++ i ) {
var node2 = ReadBinaryNode( stream, node, depth ++ );
node.mChildren[ i ] = node2;
}
}
return node;
}
// -----------------------------------------------------------------------------------
function ReadBinaryBone( stream, b ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AIBONE );
/*uint32_t size =*/
Read_uint32_t( stream );
b.mName = Read_aiString( stream );
b.mNumWeights = Read_unsigned_int( stream );
b.mOffsetMatrix = Read_aiMatrix4x4( stream );
// for the moment we write dumb min/max values for the bones, too.
// maybe I'll add a better, hash-like solution later
if ( shortened ) {
ReadBounds( stream, b.mWeights, b.mNumWeights );
} else {
// else write as usual
b.mWeights = [];
ReadArray_aiVertexWeight( stream, b.mWeights, b.mNumWeights );
}
return b;
}
function ReadBinaryMesh( stream, mesh ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AIMESH );
/*uint32_t size =*/
Read_uint32_t( stream );
mesh.mPrimitiveTypes = Read_unsigned_int( stream );
mesh.mNumVertices = Read_unsigned_int( stream );
mesh.mNumFaces = Read_unsigned_int( stream );
mesh.mNumBones = Read_unsigned_int( stream );
mesh.mMaterialIndex = Read_unsigned_int( stream );
mesh.mNumUVComponents = [];
// first of all, write bits for all existent vertex components
var c = Read_unsigned_int( stream );
if ( c & ASSBIN_MESH_HAS_POSITIONS ) {
if ( shortened ) {
ReadBounds( stream, mesh.mVertices, mesh.mNumVertices );
} else {
// else write as usual
mesh.mVertices = [];
mesh.mVertexBuffer = stream.subArray32( stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4 );
stream.Seek( mesh.mNumVertices * 3 * 4, aiOrigin_CUR );
}
}
if ( c & ASSBIN_MESH_HAS_NORMALS ) {
if ( shortened ) {
ReadBounds( stream, mesh.mNormals, mesh.mNumVertices );
} else {
// else write as usual
mesh.mNormals = [];
mesh.mNormalBuffer = stream.subArray32( stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4 );
stream.Seek( mesh.mNumVertices * 3 * 4, aiOrigin_CUR );
}
}
if ( c & ASSBIN_MESH_HAS_TANGENTS_AND_BITANGENTS ) {
if ( shortened ) {
ReadBounds( stream, mesh.mTangents, mesh.mNumVertices );
ReadBounds( stream, mesh.mBitangents, mesh.mNumVertices );
} else {
// else write as usual
mesh.mTangents = [];
mesh.mTangentBuffer = stream.subArray32( stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4 );
stream.Seek( mesh.mNumVertices * 3 * 4, aiOrigin_CUR );
mesh.mBitangents = [];
mesh.mBitangentBuffer = stream.subArray32( stream.readOffset, stream.readOffset + mesh.mNumVertices * 3 * 4 );
stream.Seek( mesh.mNumVertices * 3 * 4, aiOrigin_CUR );
}
}
for ( var n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS; ++ n ) {
if ( ! ( c & ASSBIN_MESH_HAS_COLOR( n ) ) ) break;
if ( shortened ) {
ReadBounds( stream, mesh.mColors[ n ], mesh.mNumVertices );
} else {
// else write as usual
mesh.mColors[ n ] = [];
mesh.mColorBuffer = stream.subArray32( stream.readOffset, stream.readOffset + mesh.mNumVertices * 4 * 4 );
stream.Seek( mesh.mNumVertices * 4 * 4, aiOrigin_CUR );
}
}
mesh.mTexCoordsBuffers = [];
for ( var n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++ n ) {
if ( ! ( c & ASSBIN_MESH_HAS_TEXCOORD( n ) ) ) break;
// write number of UV components
mesh.mNumUVComponents[ n ] = Read_unsigned_int( stream );
if ( shortened ) {
ReadBounds( stream, mesh.mTextureCoords[ n ], mesh.mNumVertices );
} else {
// else write as usual
mesh.mTextureCoords[ n ] = [];
//note that assbin always writes 3d texcoords
mesh.mTexCoordsBuffers[ n ] = [];
for ( var uv = 0; uv < mesh.mNumVertices; uv ++ ) {
mesh.mTexCoordsBuffers[ n ].push( readFloat( stream ) );
mesh.mTexCoordsBuffers[ n ].push( readFloat( stream ) );
readFloat( stream );
}
}
}
// write faces. There are no floating-point calculations involved
// in these, so we can write a simple hash over the face data
// to the dump file. We generate a single 32 Bit hash for 512 faces
// using Assimp's standard hashing function.
if ( shortened ) {
Read_unsigned_int( stream );
} else {
// else write as usual
// if there are less than 2^16 vertices, we can simply use 16 bit integers ...
mesh.mFaces = [];
var indexCounter = 0;
mesh.mIndexArray = [];
for ( var i = 0; i < mesh.mNumFaces; ++ i ) {
var f = mesh.mFaces[ i ] = new aiFace();
// BOOST_STATIC_ASSERT(AI_MAX_FACE_INDICES <= 0xffff);
f.mNumIndices = Read_uint16_t( stream );
f.mIndices = [];
for ( var a = 0; a < f.mNumIndices; ++ a ) {
if ( mesh.mNumVertices < ( 1 << 16 ) ) {
f.mIndices[ a ] = Read_uint16_t( stream );
} else {
f.mIndices[ a ] = Read_unsigned_int( stream );
}
}
if ( f.mNumIndices === 3 ) {
mesh.mIndexArray.push( f.mIndices[ 0 ] );
mesh.mIndexArray.push( f.mIndices[ 1 ] );
mesh.mIndexArray.push( f.mIndices[ 2 ] );
} else if ( f.mNumIndices === 4 ) {
mesh.mIndexArray.push( f.mIndices[ 0 ] );
mesh.mIndexArray.push( f.mIndices[ 1 ] );
mesh.mIndexArray.push( f.mIndices[ 2 ] );
mesh.mIndexArray.push( f.mIndices[ 2 ] );
mesh.mIndexArray.push( f.mIndices[ 3 ] );
mesh.mIndexArray.push( f.mIndices[ 0 ] );
} else {
throw ( new Error( "Sorry, can't currently triangulate polys. Use the triangulate preprocessor in Assimp." ) );
}
}
}
// write bones
if ( mesh.mNumBones ) {
mesh.mBones = [];
for ( var a = 0; a < mesh.mNumBones; ++ a ) {
mesh.mBones[ a ] = new aiBone();
ReadBinaryBone( stream, mesh.mBones[ a ] );
}
}
}
function ReadBinaryMaterialProperty( stream, prop ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AIMATERIALPROPERTY );
/*uint32_t size =*/
Read_uint32_t( stream );
prop.mKey = Read_aiString( stream );
prop.mSemantic = Read_unsigned_int( stream );
prop.mIndex = Read_unsigned_int( stream );
prop.mDataLength = Read_unsigned_int( stream );
prop.mType = Read_unsigned_int( stream );
prop.mData = [];
stream.ReadBytes( prop.mData, 1, prop.mDataLength );
}
// -----------------------------------------------------------------------------------
function ReadBinaryMaterial( stream, mat ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AIMATERIAL );
/*uint32_t size =*/
Read_uint32_t( stream );
mat.mNumAllocated = mat.mNumProperties = Read_unsigned_int( stream );
if ( mat.mNumProperties ) {
if ( mat.mProperties ) {
delete mat.mProperties;
}
mat.mProperties = [];
for ( var i = 0; i < mat.mNumProperties; ++ i ) {
mat.mProperties[ i ] = new aiMaterialProperty();
ReadBinaryMaterialProperty( stream, mat.mProperties[ i ] );
}
}
}
// -----------------------------------------------------------------------------------
function ReadBinaryNodeAnim( stream, nd ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AINODEANIM );
/*uint32_t size =*/
Read_uint32_t( stream );
nd.mNodeName = Read_aiString( stream );
nd.mNumPositionKeys = Read_unsigned_int( stream );
nd.mNumRotationKeys = Read_unsigned_int( stream );
nd.mNumScalingKeys = Read_unsigned_int( stream );
nd.mPreState = Read_unsigned_int( stream );
nd.mPostState = Read_unsigned_int( stream );
if ( nd.mNumPositionKeys ) {
if ( shortened ) {
ReadBounds( stream, nd.mPositionKeys, nd.mNumPositionKeys );
} else {
// else write as usual
nd.mPositionKeys = [];
ReadArray_aiVectorKey( stream, nd.mPositionKeys, nd.mNumPositionKeys );
}
}
if ( nd.mNumRotationKeys ) {
if ( shortened ) {
ReadBounds( stream, nd.mRotationKeys, nd.mNumRotationKeys );
} else {
// else write as usual
nd.mRotationKeys = [];
ReadArray_aiQuatKey( stream, nd.mRotationKeys, nd.mNumRotationKeys );
}
}
if ( nd.mNumScalingKeys ) {
if ( shortened ) {
ReadBounds( stream, nd.mScalingKeys, nd.mNumScalingKeys );
} else {
// else write as usual
nd.mScalingKeys = [];
ReadArray_aiVectorKey( stream, nd.mScalingKeys, nd.mNumScalingKeys );
}
}
}
// -----------------------------------------------------------------------------------
function ReadBinaryAnim( stream, anim ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AIANIMATION );
/*uint32_t size =*/
Read_uint32_t( stream );
anim.mName = Read_aiString( stream );
anim.mDuration = Read_double( stream );
anim.mTicksPerSecond = Read_double( stream );
anim.mNumChannels = Read_unsigned_int( stream );
if ( anim.mNumChannels ) {
anim.mChannels = [];
for ( var a = 0; a < anim.mNumChannels; ++ a ) {
anim.mChannels[ a ] = new aiNodeAnim();
ReadBinaryNodeAnim( stream, anim.mChannels[ a ] );
}
}
}
function ReadBinaryTexture( stream, tex ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AITEXTURE );
/*uint32_t size =*/
Read_uint32_t( stream );
tex.mWidth = Read_unsigned_int( stream );
tex.mHeight = Read_unsigned_int( stream );
stream.ReadBytes( tex.achFormatHint, 1, 4 );
if ( ! shortened ) {
if ( ! tex.mHeight ) {
tex.pcData = [];
stream.ReadBytes( tex.pcData, 1, tex.mWidth );
} else {
tex.pcData = [];
stream.ReadBytes( tex.pcData, 1, tex.mWidth * tex.mHeight * 4 );
}
}
}
// -----------------------------------------------------------------------------------
function ReadBinaryLight( stream, l ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AILIGHT );
/*uint32_t size =*/
Read_uint32_t( stream );
l.mName = Read_aiString( stream );
l.mType = Read_unsigned_int( stream );
if ( l.mType != aiLightSource_DIRECTIONAL ) {
l.mAttenuationConstant = readFloat( stream );
l.mAttenuationLinear = readFloat( stream );
l.mAttenuationQuadratic = readFloat( stream );
}
l.mColorDiffuse = Read_aiColor3D( stream );
l.mColorSpecular = Read_aiColor3D( stream );
l.mColorAmbient = Read_aiColor3D( stream );
if ( l.mType == aiLightSource_SPOT ) {
l.mAngleInnerCone = readFloat( stream );
l.mAngleOuterCone = readFloat( stream );
}
}
// -----------------------------------------------------------------------------------
function ReadBinaryCamera( stream, cam ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AICAMERA );
/*uint32_t size =*/
Read_uint32_t( stream );
cam.mName = Read_aiString( stream );
cam.mPosition = Read_aiVector3D( stream );
cam.mLookAt = Read_aiVector3D( stream );
cam.mUp = Read_aiVector3D( stream );
cam.mHorizontalFOV = readFloat( stream );
cam.mClipPlaneNear = readFloat( stream );
cam.mClipPlaneFar = readFloat( stream );
cam.mAspect = readFloat( stream );
}
function ReadBinaryScene( stream, scene ) {
var chunkID = Read_uint32_t( stream );
ai_assert( chunkID == ASSBIN_CHUNK_AISCENE );
/*uint32_t size =*/
Read_uint32_t( stream );
scene.mFlags = Read_unsigned_int( stream );
scene.mNumMeshes = Read_unsigned_int( stream );
scene.mNumMaterials = Read_unsigned_int( stream );
scene.mNumAnimations = Read_unsigned_int( stream );
scene.mNumTextures = Read_unsigned_int( stream );
scene.mNumLights = Read_unsigned_int( stream );
scene.mNumCameras = Read_unsigned_int( stream );
// Read node graph
scene.mRootNode = new aiNode();
scene.mRootNode = ReadBinaryNode( stream, null, 0 );
// Read all meshes
if ( scene.mNumMeshes ) {
scene.mMeshes = [];
for ( var i = 0; i < scene.mNumMeshes; ++ i ) {
scene.mMeshes[ i ] = new aiMesh();
ReadBinaryMesh( stream, scene.mMeshes[ i ] );
}
}
// Read materials
if ( scene.mNumMaterials ) {
scene.mMaterials = [];
for ( var i = 0; i < scene.mNumMaterials; ++ i ) {
scene.mMaterials[ i ] = new aiMaterial();
ReadBinaryMaterial( stream, scene.mMaterials[ i ] );
}
}
// Read all animations
if ( scene.mNumAnimations ) {
scene.mAnimations = [];
for ( var i = 0; i < scene.mNumAnimations; ++ i ) {
scene.mAnimations[ i ] = new aiAnimation();
ReadBinaryAnim( stream, scene.mAnimations[ i ] );
}
}
// Read all textures
if ( scene.mNumTextures ) {
scene.mTextures = [];
for ( var i = 0; i < scene.mNumTextures; ++ i ) {
scene.mTextures[ i ] = new aiTexture();
ReadBinaryTexture( stream, scene.mTextures[ i ] );
}
}
// Read lights
if ( scene.mNumLights ) {
scene.mLights = [];
for ( var i = 0; i < scene.mNumLights; ++ i ) {
scene.mLights[ i ] = new aiLight();
ReadBinaryLight( stream, scene.mLights[ i ] );
}
}
// Read cameras
if ( scene.mNumCameras ) {
scene.mCameras = [];
for ( var i = 0; i < scene.mNumCameras; ++ i ) {
scene.mCameras[ i ] = new aiCamera();
ReadBinaryCamera( stream, scene.mCameras[ i ] );
}
}
}
var aiOrigin_CUR = 0;
var aiOrigin_BEG = 1;
function extendStream( stream ) {
stream.readOffset = 0;
stream.Seek = function ( off, ori ) {
if ( ori == aiOrigin_CUR ) {
stream.readOffset += off;
}
if ( ori == aiOrigin_BEG ) {
stream.readOffset = off;
}
};
stream.ReadBytes = function ( buff, size, n ) {
var bytes = size * n;
for ( var i = 0; i < bytes; i ++ )
buff[ i ] = Read_uint8_t( this );
};
stream.subArray32 = function ( start, end ) {
var buff = this.buffer;
var newbuff = buff.slice( start, end );
return new Float32Array( newbuff );
};
stream.subArrayUint16 = function ( start, end ) {
var buff = this.buffer;
var newbuff = buff.slice( start, end );
return new Uint16Array( newbuff );
};
stream.subArrayUint8 = function ( start, end ) {
var buff = this.buffer;
var newbuff = buff.slice( start, end );
return new Uint8Array( newbuff );
};
stream.subArrayUint32 = function ( start, end ) {
var buff = this.buffer;
var newbuff = buff.slice( start, end );
return new Uint32Array( newbuff );
};
}
var shortened, compressed;
function InternReadFile( pFiledata ) {
var pScene = new aiScene();
var stream = new DataView( pFiledata );
extendStream( stream );
stream.Seek( 44, aiOrigin_CUR ); // signature
/*unsigned int versionMajor =*/
var versionMajor = Read_unsigned_int( stream );
/*unsigned int versionMinor =*/
var versionMinor = Read_unsigned_int( stream );
/*unsigned int versionRevision =*/
var versionRevision = Read_unsigned_int( stream );
/*unsigned int compileFlags =*/
var compileFlags = Read_unsigned_int( stream );
shortened = Read_uint16_t( stream ) > 0;
compressed = Read_uint16_t( stream ) > 0;
if ( shortened )
throw "Shortened binaries are not supported!";
stream.Seek( 256, aiOrigin_CUR ); // original filename
stream.Seek( 128, aiOrigin_CUR ); // options
stream.Seek( 64, aiOrigin_CUR ); // padding
if ( compressed ) {
var uncompressedSize = Read_uint32_t( stream );
var compressedSize = stream.FileSize() - stream.Tell();
var compressedData = [];
stream.Read( compressedData, 1, compressedSize );
var uncompressedData = [];
uncompress( uncompressedData, uncompressedSize, compressedData, compressedSize );
var buff = new ArrayBuffer( uncompressedData );
ReadBinaryScene( buff, pScene );
} else {
ReadBinaryScene( stream, pScene );
return pScene.toTHREE();
}
}
return InternReadFile( buffer );
}
};