File size: 5,012 Bytes
6cd9596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/**
 * @author oosmoxiecode
 * @author Mugen87 / https://github.com/Mugen87
 *
 * based on http://www.blackpawn.com/texts/pqtorus/
 */

import { Geometry } from '../core/Geometry.js';
import { BufferGeometry } from '../core/BufferGeometry.js';
import { Float32BufferAttribute } from '../core/BufferAttribute.js';
import { Vector3 } from '../math/Vector3.js';

// TorusKnotGeometry

function TorusKnotGeometry( radius, tube, tubularSegments, radialSegments, p, q, heightScale ) {

	Geometry.call( this );

	this.type = 'TorusKnotGeometry';

	this.parameters = {
		radius: radius,
		tube: tube,
		tubularSegments: tubularSegments,
		radialSegments: radialSegments,
		p: p,
		q: q
	};

	if ( heightScale !== undefined ) console.warn( 'THREE.TorusKnotGeometry: heightScale has been deprecated. Use .scale( x, y, z ) instead.' );

	this.fromBufferGeometry( new TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) );
	this.mergeVertices();

}

TorusKnotGeometry.prototype = Object.create( Geometry.prototype );
TorusKnotGeometry.prototype.constructor = TorusKnotGeometry;

// TorusKnotBufferGeometry

function TorusKnotBufferGeometry( radius, tube, tubularSegments, radialSegments, p, q ) {

	BufferGeometry.call( this );

	this.type = 'TorusKnotBufferGeometry';

	this.parameters = {
		radius: radius,
		tube: tube,
		tubularSegments: tubularSegments,
		radialSegments: radialSegments,
		p: p,
		q: q
	};

	radius = radius || 1;
	tube = tube || 0.4;
	tubularSegments = Math.floor( tubularSegments ) || 64;
	radialSegments = Math.floor( radialSegments ) || 8;
	p = p || 2;
	q = q || 3;

	// buffers

	var indices = [];
	var vertices = [];
	var normals = [];
	var uvs = [];

	// helper variables

	var i, j;

	var vertex = new Vector3();
	var normal = new Vector3();

	var P1 = new Vector3();
	var P2 = new Vector3();

	var B = new Vector3();
	var T = new Vector3();
	var N = new Vector3();

	// generate vertices, normals and uvs

	for ( i = 0; i <= tubularSegments; ++ i ) {

		// the radian "u" is used to calculate the position on the torus curve of the current tubular segement

		var u = i / tubularSegments * p * Math.PI * 2;

		// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
		// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions

		calculatePositionOnCurve( u, p, q, radius, P1 );
		calculatePositionOnCurve( u + 0.01, p, q, radius, P2 );

		// calculate orthonormal basis

		T.subVectors( P2, P1 );
		N.addVectors( P2, P1 );
		B.crossVectors( T, N );
		N.crossVectors( B, T );

		// normalize B, N. T can be ignored, we don't use it

		B.normalize();
		N.normalize();

		for ( j = 0; j <= radialSegments; ++ j ) {

			// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
			// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.

			var v = j / radialSegments * Math.PI * 2;
			var cx = - tube * Math.cos( v );
			var cy = tube * Math.sin( v );

			// now calculate the final vertex position.
			// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve

			vertex.x = P1.x + ( cx * N.x + cy * B.x );
			vertex.y = P1.y + ( cx * N.y + cy * B.y );
			vertex.z = P1.z + ( cx * N.z + cy * B.z );

			vertices.push( vertex.x, vertex.y, vertex.z );

			// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)

			normal.subVectors( vertex, P1 ).normalize();

			normals.push( normal.x, normal.y, normal.z );

			// uv

			uvs.push( i / tubularSegments );
			uvs.push( j / radialSegments );

		}

	}

	// generate indices

	for ( j = 1; j <= tubularSegments; j ++ ) {

		for ( i = 1; i <= radialSegments; i ++ ) {

			// indices

			var a = ( radialSegments + 1 ) * ( j - 1 ) + ( i - 1 );
			var b = ( radialSegments + 1 ) * j + ( i - 1 );
			var c = ( radialSegments + 1 ) * j + i;
			var d = ( radialSegments + 1 ) * ( j - 1 ) + i;

			// faces

			indices.push( a, b, d );
			indices.push( b, c, d );

		}

	}

	// build geometry

	this.setIndex( indices );
	this.addAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
	this.addAttribute( 'normal', new Float32BufferAttribute( normals, 3 ) );
	this.addAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );

	// this function calculates the current position on the torus curve

	function calculatePositionOnCurve( u, p, q, radius, position ) {

		var cu = Math.cos( u );
		var su = Math.sin( u );
		var quOverP = q / p * u;
		var cs = Math.cos( quOverP );

		position.x = radius * ( 2 + cs ) * 0.5 * cu;
		position.y = radius * ( 2 + cs ) * su * 0.5;
		position.z = radius * Math.sin( quOverP ) * 0.5;

	}

}

TorusKnotBufferGeometry.prototype = Object.create( BufferGeometry.prototype );
TorusKnotBufferGeometry.prototype.constructor = TorusKnotBufferGeometry;


export { TorusKnotGeometry, TorusKnotBufferGeometry };