Spaces:
Running
Running
File size: 10,697 Bytes
6cd9596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
/**
* @author Prashant Sharma / spidersharma03
* @author Ben Houston / bhouston, https://clara.io
*
* To avoid cube map seams, I create an extra pixel around each face. This way when the cube map is
* sampled by an application later(with a little care by sampling the centre of the texel), the extra 1 border
* of pixels makes sure that there is no seams artifacts present. This works perfectly for cubeUV format as
* well where the 6 faces can be arranged in any manner whatsoever.
* Code in the beginning of fragment shader's main function does this job for a given resolution.
* Run Scene_PMREM_Test.html in the examples directory to see the sampling from the cube lods generated
* by this class.
*/
import {
DoubleSide,
GammaEncoding,
LinearEncoding,
LinearFilter,
LinearToneMapping,
Mesh,
NearestFilter,
NoBlending,
OrthographicCamera,
PlaneBufferGeometry,
Scene,
ShaderMaterial,
WebGLRenderTargetCube,
sRGBEncoding
} from "../../../build/three.module.js";
var PMREMGenerator = ( function () {
var shader = getShader();
var camera = new OrthographicCamera( - 1, 1, 1, - 1, 0.0, 1000 );
var scene = new Scene();
var planeMesh = new Mesh( new PlaneBufferGeometry( 2, 2, 0 ), shader );
planeMesh.material.side = DoubleSide;
scene.add( planeMesh );
scene.add( camera );
var PMREMGenerator = function ( sourceTexture, samplesPerLevel, resolution ) {
this.sourceTexture = sourceTexture;
this.resolution = ( resolution !== undefined ) ? resolution : 256; // NODE: 256 is currently hard coded in the glsl code for performance reasons
this.samplesPerLevel = ( samplesPerLevel !== undefined ) ? samplesPerLevel : 32;
var monotonicEncoding = ( this.sourceTexture.encoding === LinearEncoding ) ||
( this.sourceTexture.encoding === GammaEncoding ) || ( this.sourceTexture.encoding === sRGBEncoding );
this.sourceTexture.minFilter = ( monotonicEncoding ) ? LinearFilter : NearestFilter;
this.sourceTexture.magFilter = ( monotonicEncoding ) ? LinearFilter : NearestFilter;
this.sourceTexture.generateMipmaps = this.sourceTexture.generateMipmaps && monotonicEncoding;
this.cubeLods = [];
var size = this.resolution;
var params = {
format: this.sourceTexture.format,
magFilter: this.sourceTexture.magFilter,
minFilter: this.sourceTexture.minFilter,
type: this.sourceTexture.type,
generateMipmaps: this.sourceTexture.generateMipmaps,
anisotropy: this.sourceTexture.anisotropy,
encoding: this.sourceTexture.encoding
};
// how many LODs fit in the given CubeUV Texture.
this.numLods = Math.log( size ) / Math.log( 2 ) - 2; // IE11 doesn't support Math.log2
for ( var i = 0; i < this.numLods; i ++ ) {
var renderTarget = new WebGLRenderTargetCube( size, size, params );
renderTarget.texture.name = "PMREMGenerator.cube" + i;
this.cubeLods.push( renderTarget );
size = Math.max( 16, size / 2 );
}
};
PMREMGenerator.prototype = {
constructor: PMREMGenerator,
/*
* Prashant Sharma / spidersharma03: More thought and work is needed here.
* Right now it's a kind of a hack to use the previously convolved map to convolve the current one.
* I tried to use the original map to convolve all the lods, but for many textures(specially the high frequency)
* even a high number of samples(1024) dosen't lead to satisfactory results.
* By using the previous convolved maps, a lower number of samples are generally sufficient(right now 32, which
* gives okay results unless we see the reflection very carefully, or zoom in too much), however the math
* goes wrong as the distribution function tries to sample a larger area than what it should be. So I simply scaled
* the roughness by 0.9(totally empirical) to try to visually match the original result.
* The condition "if(i <5)" is also an attemt to make the result match the original result.
* This method requires the most amount of thinking I guess. Here is a paper which we could try to implement in future::
* https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch20.html
*/
update: function ( renderer ) {
// Texture should only be flipped for CubeTexture, not for
// a Texture created via WebGLRenderTargetCube.
var tFlip = ( this.sourceTexture.isCubeTexture ) ? - 1 : 1;
shader.defines[ 'SAMPLES_PER_LEVEL' ] = this.samplesPerLevel;
shader.uniforms[ 'faceIndex' ].value = 0;
shader.uniforms[ 'envMap' ].value = this.sourceTexture;
shader.envMap = this.sourceTexture;
shader.needsUpdate = true;
var gammaInput = renderer.gammaInput;
var gammaOutput = renderer.gammaOutput;
var toneMapping = renderer.toneMapping;
var toneMappingExposure = renderer.toneMappingExposure;
var currentRenderTarget = renderer.getRenderTarget();
renderer.toneMapping = LinearToneMapping;
renderer.toneMappingExposure = 1.0;
renderer.gammaInput = false;
renderer.gammaOutput = false;
for ( var i = 0; i < this.numLods; i ++ ) {
var r = i / ( this.numLods - 1 );
shader.uniforms[ 'roughness' ].value = r * 0.9; // see comment above, pragmatic choice
// Only apply the tFlip for the first LOD
shader.uniforms[ 'tFlip' ].value = ( i == 0 ) ? tFlip : 1;
var size = this.cubeLods[ i ].width;
shader.uniforms[ 'mapSize' ].value = size;
this.renderToCubeMapTarget( renderer, this.cubeLods[ i ] );
if ( i < 5 ) shader.uniforms[ 'envMap' ].value = this.cubeLods[ i ].texture;
}
renderer.setRenderTarget( currentRenderTarget );
renderer.toneMapping = toneMapping;
renderer.toneMappingExposure = toneMappingExposure;
renderer.gammaInput = gammaInput;
renderer.gammaOutput = gammaOutput;
},
renderToCubeMapTarget: function ( renderer, renderTarget ) {
for ( var i = 0; i < 6; i ++ ) {
this.renderToCubeMapTargetFace( renderer, renderTarget, i );
}
},
renderToCubeMapTargetFace: function ( renderer, renderTarget, faceIndex ) {
shader.uniforms[ 'faceIndex' ].value = faceIndex;
renderer.setRenderTarget( renderTarget, faceIndex );
renderer.clear();
renderer.render( scene, camera );
},
dispose: function () {
for ( var i = 0, l = this.cubeLods.length; i < l; i ++ ) {
this.cubeLods[ i ].dispose();
}
},
};
function getShader() {
var shaderMaterial = new ShaderMaterial( {
defines: {
"SAMPLES_PER_LEVEL": 20,
},
uniforms: {
"faceIndex": { value: 0 },
"roughness": { value: 0.5 },
"mapSize": { value: 0.5 },
"envMap": { value: null },
"tFlip": { value: - 1 },
},
vertexShader:
"varying vec2 vUv;\n\
void main() {\n\
vUv = uv;\n\
gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );\n\
}",
fragmentShader:
"#include <common>\n\
varying vec2 vUv;\n\
uniform int faceIndex;\n\
uniform float roughness;\n\
uniform samplerCube envMap;\n\
uniform float mapSize;\n\
uniform float tFlip;\n\
\n\
float GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\n\
float a = ggxRoughness + 0.0001;\n\
a *= a;\n\
return ( 2.0 / a - 2.0 );\n\
}\n\
vec3 ImportanceSamplePhong(vec2 uv, mat3 vecSpace, float specPow) {\n\
float phi = uv.y * 2.0 * PI;\n\
float cosTheta = pow(1.0 - uv.x, 1.0 / (specPow + 1.0));\n\
float sinTheta = sqrt(1.0 - cosTheta * cosTheta);\n\
vec3 sampleDir = vec3(cos(phi) * sinTheta, sin(phi) * sinTheta, cosTheta);\n\
return vecSpace * sampleDir;\n\
}\n\
vec3 ImportanceSampleGGX( vec2 uv, mat3 vecSpace, float Roughness )\n\
{\n\
float a = Roughness * Roughness;\n\
float Phi = 2.0 * PI * uv.x;\n\
float CosTheta = sqrt( (1.0 - uv.y) / ( 1.0 + (a*a - 1.0) * uv.y ) );\n\
float SinTheta = sqrt( 1.0 - CosTheta * CosTheta );\n\
return vecSpace * vec3(SinTheta * cos( Phi ), SinTheta * sin( Phi ), CosTheta);\n\
}\n\
mat3 matrixFromVector(vec3 n) {\n\
float a = 1.0 / (1.0 + n.z);\n\
float b = -n.x * n.y * a;\n\
vec3 b1 = vec3(1.0 - n.x * n.x * a, b, -n.x);\n\
vec3 b2 = vec3(b, 1.0 - n.y * n.y * a, -n.y);\n\
return mat3(b1, b2, n);\n\
}\n\
\n\
vec4 testColorMap(float Roughness) {\n\
vec4 color;\n\
if(faceIndex == 0)\n\
color = vec4(1.0,0.0,0.0,1.0);\n\
else if(faceIndex == 1)\n\
color = vec4(0.0,1.0,0.0,1.0);\n\
else if(faceIndex == 2)\n\
color = vec4(0.0,0.0,1.0,1.0);\n\
else if(faceIndex == 3)\n\
color = vec4(1.0,1.0,0.0,1.0);\n\
else if(faceIndex == 4)\n\
color = vec4(0.0,1.0,1.0,1.0);\n\
else\n\
color = vec4(1.0,0.0,1.0,1.0);\n\
color *= ( 1.0 - Roughness );\n\
return color;\n\
}\n\
void main() {\n\
vec3 sampleDirection;\n\
vec2 uv = vUv*2.0 - 1.0;\n\
float offset = -1.0/mapSize;\n\
const float a = -1.0;\n\
const float b = 1.0;\n\
float c = -1.0 + offset;\n\
float d = 1.0 - offset;\n\
float bminusa = b - a;\n\
uv.x = (uv.x - a)/bminusa * d - (uv.x - b)/bminusa * c;\n\
uv.y = (uv.y - a)/bminusa * d - (uv.y - b)/bminusa * c;\n\
if (faceIndex==0) {\n\
sampleDirection = vec3(1.0, -uv.y, -uv.x);\n\
} else if (faceIndex==1) {\n\
sampleDirection = vec3(-1.0, -uv.y, uv.x);\n\
} else if (faceIndex==2) {\n\
sampleDirection = vec3(uv.x, 1.0, uv.y);\n\
} else if (faceIndex==3) {\n\
sampleDirection = vec3(uv.x, -1.0, -uv.y);\n\
} else if (faceIndex==4) {\n\
sampleDirection = vec3(uv.x, -uv.y, 1.0);\n\
} else {\n\
sampleDirection = vec3(-uv.x, -uv.y, -1.0);\n\
}\n\
vec3 correctedDirection = vec3( tFlip * sampleDirection.x, sampleDirection.yz );\n\
mat3 vecSpace = matrixFromVector( normalize( correctedDirection ) );\n\
vec3 rgbColor = vec3(0.0);\n\
const int NumSamples = SAMPLES_PER_LEVEL;\n\
vec3 vect;\n\
float weight = 0.0;\n\
for( int i = 0; i < NumSamples; i ++ ) {\n\
float sini = sin(float(i));\n\
float cosi = cos(float(i));\n\
float r = rand(vec2(sini, cosi));\n\
vect = ImportanceSampleGGX(vec2(float(i) / float(NumSamples), r), vecSpace, roughness);\n\
float dotProd = dot(vect, normalize(sampleDirection));\n\
weight += dotProd;\n\
vec3 color = envMapTexelToLinear(textureCube(envMap, vect)).rgb;\n\
rgbColor.rgb += color;\n\
}\n\
rgbColor /= float(NumSamples);\n\
//rgbColor = testColorMap( roughness ).rgb;\n\
gl_FragColor = linearToOutputTexel( vec4( rgbColor, 1.0 ) );\n\
}",
blending: NoBlending
} );
shaderMaterial.type = 'PMREMGenerator';
return shaderMaterial;
}
return PMREMGenerator;
} )();
export { PMREMGenerator };
|