Spaces:
Running
Running
File size: 11,893 Bytes
6cd9596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
// Author: Aleksandr Albert
// Website: www.routter.co.tt
// Description: A deep water ocean shader set
// based on an implementation of a Tessendorf Waves
// originally presented by David Li ( www.david.li/waves )
// The general method is to apply shaders to simulation Framebuffers
// and then sample these framebuffers when rendering the ocean mesh
// The set uses 7 shaders:
// -- Simulation shaders
// [1] ocean_sim_vertex -> Vertex shader used to set up a 2x2 simulation plane centered at (0,0)
// [2] ocean_subtransform -> Fragment shader used to subtransform the mesh (generates the displacement map)
// [3] ocean_initial_spectrum -> Fragment shader used to set intitial wave frequency at a texel coordinate
// [4] ocean_phase -> Fragment shader used to set wave phase at a texel coordinate
// [5] ocean_spectrum -> Fragment shader used to set current wave frequency at a texel coordinate
// [6] ocean_normal -> Fragment shader used to set face normals at a texel coordinate
// -- Rendering Shader
// [7] ocean_main -> Vertex and Fragment shader used to create the final render
THREE.ShaderLib[ 'ocean_sim_vertex' ] = {
vertexShader: [
'varying vec2 vUV;',
'void main (void) {',
'vUV = position.xy * 0.5 + 0.5;',
'gl_Position = vec4(position, 1.0 );',
'}'
].join( '\n' )
};
THREE.ShaderLib[ 'ocean_subtransform' ] = {
uniforms: {
"u_input": { value: null },
"u_transformSize": { value: 512.0 },
"u_subtransformSize": { value: 250.0 }
},
fragmentShader: [
//GPU FFT using a Stockham formulation
'precision highp float;',
'#include <common>',
'uniform sampler2D u_input;',
'uniform float u_transformSize;',
'uniform float u_subtransformSize;',
'varying vec2 vUV;',
'vec2 multiplyComplex (vec2 a, vec2 b) {',
'return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);',
'}',
'void main (void) {',
'#ifdef HORIZONTAL',
'float index = vUV.x * u_transformSize - 0.5;',
'#else',
'float index = vUV.y * u_transformSize - 0.5;',
'#endif',
'float evenIndex = floor(index / u_subtransformSize) * (u_subtransformSize * 0.5) + mod(index, u_subtransformSize * 0.5);',
//transform two complex sequences simultaneously
'#ifdef HORIZONTAL',
'vec4 even = texture2D(u_input, vec2(evenIndex + 0.5, gl_FragCoord.y) / u_transformSize).rgba;',
'vec4 odd = texture2D(u_input, vec2(evenIndex + u_transformSize * 0.5 + 0.5, gl_FragCoord.y) / u_transformSize).rgba;',
'#else',
'vec4 even = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + 0.5) / u_transformSize).rgba;',
'vec4 odd = texture2D(u_input, vec2(gl_FragCoord.x, evenIndex + u_transformSize * 0.5 + 0.5) / u_transformSize).rgba;',
'#endif',
'float twiddleArgument = -2.0 * PI * (index / u_subtransformSize);',
'vec2 twiddle = vec2(cos(twiddleArgument), sin(twiddleArgument));',
'vec2 outputA = even.xy + multiplyComplex(twiddle, odd.xy);',
'vec2 outputB = even.zw + multiplyComplex(twiddle, odd.zw);',
'gl_FragColor = vec4(outputA, outputB);',
'}'
].join( '\n' )
};
THREE.ShaderLib[ 'ocean_initial_spectrum' ] = {
uniforms: {
"u_wind": { value: new THREE.Vector2( 10.0, 10.0 ) },
"u_resolution": { value: 512.0 },
"u_size": { value: 250.0 }
},
vertexShader: [
'void main (void) {',
'gl_Position = vec4(position, 1.0);',
'}'
].join( '\n' ),
fragmentShader: [
'precision highp float;',
'#include <common>',
'const float G = 9.81;',
'const float KM = 370.0;',
'const float CM = 0.23;',
'uniform vec2 u_wind;',
'uniform float u_resolution;',
'uniform float u_size;',
'float omega (float k) {',
'return sqrt(G * k * (1.0 + pow2(k / KM)));',
'}',
'float tanh (float x) {',
'return (1.0 - exp(-2.0 * x)) / (1.0 + exp(-2.0 * x));',
'}',
'void main (void) {',
'vec2 coordinates = gl_FragCoord.xy - 0.5;',
'float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
'float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
'vec2 K = (2.0 * PI * vec2(n, m)) / u_size;',
'float k = length(K);',
'float l_wind = length(u_wind);',
'float Omega = 0.84;',
'float kp = G * pow2(Omega / l_wind);',
'float c = omega(k) / k;',
'float cp = omega(kp) / kp;',
'float Lpm = exp(-1.25 * pow2(kp / k));',
'float gamma = 1.7;',
'float sigma = 0.08 * (1.0 + 4.0 * pow(Omega, -3.0));',
'float Gamma = exp(-pow2(sqrt(k / kp) - 1.0) / 2.0 * pow2(sigma));',
'float Jp = pow(gamma, Gamma);',
'float Fp = Lpm * Jp * exp(-Omega / sqrt(10.0) * (sqrt(k / kp) - 1.0));',
'float alphap = 0.006 * sqrt(Omega);',
'float Bl = 0.5 * alphap * cp / c * Fp;',
'float z0 = 0.000037 * pow2(l_wind) / G * pow(l_wind / cp, 0.9);',
'float uStar = 0.41 * l_wind / log(10.0 / z0);',
'float alpham = 0.01 * ((uStar < CM) ? (1.0 + log(uStar / CM)) : (1.0 + 3.0 * log(uStar / CM)));',
'float Fm = exp(-0.25 * pow2(k / KM - 1.0));',
'float Bh = 0.5 * alpham * CM / c * Fm * Lpm;',
'float a0 = log(2.0) / 4.0;',
'float am = 0.13 * uStar / CM;',
'float Delta = tanh(a0 + 4.0 * pow(c / cp, 2.5) + am * pow(CM / c, 2.5));',
'float cosPhi = dot(normalize(u_wind), normalize(K));',
'float S = (1.0 / (2.0 * PI)) * pow(k, -4.0) * (Bl + Bh) * (1.0 + Delta * (2.0 * cosPhi * cosPhi - 1.0));',
'float dk = 2.0 * PI / u_size;',
'float h = sqrt(S / 2.0) * dk;',
'if (K.x == 0.0 && K.y == 0.0) {',
'h = 0.0;', //no DC term
'}',
'gl_FragColor = vec4(h, 0.0, 0.0, 0.0);',
'}'
].join( '\n' )
};
THREE.ShaderLib[ 'ocean_phase' ] = {
uniforms: {
"u_phases": { value: null },
"u_deltaTime": { value: null },
"u_resolution": { value: null },
"u_size": { value: null }
},
fragmentShader: [
'precision highp float;',
'#include <common>',
'const float G = 9.81;',
'const float KM = 370.0;',
'varying vec2 vUV;',
'uniform sampler2D u_phases;',
'uniform float u_deltaTime;',
'uniform float u_resolution;',
'uniform float u_size;',
'float omega (float k) {',
'return sqrt(G * k * (1.0 + k * k / KM * KM));',
'}',
'void main (void) {',
'float deltaTime = 1.0 / 60.0;',
'vec2 coordinates = gl_FragCoord.xy - 0.5;',
'float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
'float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
'vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;',
'float phase = texture2D(u_phases, vUV).r;',
'float deltaPhase = omega(length(waveVector)) * u_deltaTime;',
'phase = mod(phase + deltaPhase, 2.0 * PI);',
'gl_FragColor = vec4(phase, 0.0, 0.0, 0.0);',
'}'
].join( '\n' )
};
THREE.ShaderLib[ 'ocean_spectrum' ] = {
uniforms: {
"u_size": { value: null },
"u_resolution": { value: null },
"u_choppiness": { value: null },
"u_phases": { value: null },
"u_initialSpectrum": { value: null }
},
fragmentShader: [
'precision highp float;',
'#include <common>',
'const float G = 9.81;',
'const float KM = 370.0;',
'varying vec2 vUV;',
'uniform float u_size;',
'uniform float u_resolution;',
'uniform float u_choppiness;',
'uniform sampler2D u_phases;',
'uniform sampler2D u_initialSpectrum;',
'vec2 multiplyComplex (vec2 a, vec2 b) {',
'return vec2(a[0] * b[0] - a[1] * b[1], a[1] * b[0] + a[0] * b[1]);',
'}',
'vec2 multiplyByI (vec2 z) {',
'return vec2(-z[1], z[0]);',
'}',
'float omega (float k) {',
'return sqrt(G * k * (1.0 + k * k / KM * KM));',
'}',
'void main (void) {',
'vec2 coordinates = gl_FragCoord.xy - 0.5;',
'float n = (coordinates.x < u_resolution * 0.5) ? coordinates.x : coordinates.x - u_resolution;',
'float m = (coordinates.y < u_resolution * 0.5) ? coordinates.y : coordinates.y - u_resolution;',
'vec2 waveVector = (2.0 * PI * vec2(n, m)) / u_size;',
'float phase = texture2D(u_phases, vUV).r;',
'vec2 phaseVector = vec2(cos(phase), sin(phase));',
'vec2 h0 = texture2D(u_initialSpectrum, vUV).rg;',
'vec2 h0Star = texture2D(u_initialSpectrum, vec2(1.0 - vUV + 1.0 / u_resolution)).rg;',
'h0Star.y *= -1.0;',
'vec2 h = multiplyComplex(h0, phaseVector) + multiplyComplex(h0Star, vec2(phaseVector.x, -phaseVector.y));',
'vec2 hX = -multiplyByI(h * (waveVector.x / length(waveVector))) * u_choppiness;',
'vec2 hZ = -multiplyByI(h * (waveVector.y / length(waveVector))) * u_choppiness;',
//no DC term
'if (waveVector.x == 0.0 && waveVector.y == 0.0) {',
'h = vec2(0.0);',
'hX = vec2(0.0);',
'hZ = vec2(0.0);',
'}',
'gl_FragColor = vec4(hX + multiplyByI(h), hZ);',
'}'
].join( '\n' )
};
THREE.ShaderLib[ 'ocean_normals' ] = {
uniforms: {
"u_displacementMap": { value: null },
"u_resolution": { value: null },
"u_size": { value: null }
},
fragmentShader: [
'precision highp float;',
'varying vec2 vUV;',
'uniform sampler2D u_displacementMap;',
'uniform float u_resolution;',
'uniform float u_size;',
'void main (void) {',
'float texel = 1.0 / u_resolution;',
'float texelSize = u_size / u_resolution;',
'vec3 center = texture2D(u_displacementMap, vUV).rgb;',
'vec3 right = vec3(texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(texel, 0.0)).rgb - center;',
'vec3 left = vec3(-texelSize, 0.0, 0.0) + texture2D(u_displacementMap, vUV + vec2(-texel, 0.0)).rgb - center;',
'vec3 top = vec3(0.0, 0.0, -texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, -texel)).rgb - center;',
'vec3 bottom = vec3(0.0, 0.0, texelSize) + texture2D(u_displacementMap, vUV + vec2(0.0, texel)).rgb - center;',
'vec3 topRight = cross(right, top);',
'vec3 topLeft = cross(top, left);',
'vec3 bottomLeft = cross(left, bottom);',
'vec3 bottomRight = cross(bottom, right);',
'gl_FragColor = vec4(normalize(topRight + topLeft + bottomLeft + bottomRight), 1.0);',
'}'
].join( '\n' )
};
THREE.ShaderLib[ 'ocean_main' ] = {
uniforms: {
"u_displacementMap": { value: null },
"u_normalMap": { value: null },
"u_geometrySize": { value: null },
"u_size": { value: null },
"u_projectionMatrix": { value: null },
"u_viewMatrix": { value: null },
"u_cameraPosition": { value: null },
"u_skyColor": { value: null },
"u_oceanColor": { value: null },
"u_sunDirection": { value: null },
"u_exposure": { value: null }
},
vertexShader: [
'precision highp float;',
'varying vec3 vPos;',
'varying vec2 vUV;',
'uniform mat4 u_projectionMatrix;',
'uniform mat4 u_viewMatrix;',
'uniform float u_size;',
'uniform float u_geometrySize;',
'uniform sampler2D u_displacementMap;',
'void main (void) {',
'vec3 newPos = position + texture2D(u_displacementMap, uv).rgb * (u_geometrySize / u_size);',
'vPos = newPos;',
'vUV = uv;',
'gl_Position = u_projectionMatrix * u_viewMatrix * vec4(newPos, 1.0);',
'}'
].join( '\n' ),
fragmentShader: [
'precision highp float;',
'varying vec3 vPos;',
'varying vec2 vUV;',
'uniform sampler2D u_displacementMap;',
'uniform sampler2D u_normalMap;',
'uniform vec3 u_cameraPosition;',
'uniform vec3 u_oceanColor;',
'uniform vec3 u_skyColor;',
'uniform vec3 u_sunDirection;',
'uniform float u_exposure;',
'vec3 hdr (vec3 color, float exposure) {',
'return 1.0 - exp(-color * exposure);',
'}',
'void main (void) {',
'vec3 normal = texture2D(u_normalMap, vUV).rgb;',
'vec3 view = normalize(u_cameraPosition - vPos);',
'float fresnel = 0.02 + 0.98 * pow(1.0 - dot(normal, view), 5.0);',
'vec3 sky = fresnel * u_skyColor;',
'float diffuse = clamp(dot(normal, normalize(u_sunDirection)), 0.0, 1.0);',
'vec3 water = (1.0 - fresnel) * u_oceanColor * u_skyColor * diffuse;',
'vec3 color = sky + water;',
'gl_FragColor = vec4(hdr(color, u_exposure), 1.0);',
'}'
].join( '\n' )
};
|