Spaces:
Running
Running
File size: 8,451 Bytes
6cd9596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
/**
* @author Mugen87 / https://github.com/Mugen87
*
*/
THREE.Refractor = function ( geometry, options ) {
THREE.Mesh.call( this, geometry );
this.type = 'Refractor';
var scope = this;
options = options || {};
var color = ( options.color !== undefined ) ? new THREE.Color( options.color ) : new THREE.Color( 0x7F7F7F );
var textureWidth = options.textureWidth || 512;
var textureHeight = options.textureHeight || 512;
var clipBias = options.clipBias || 0;
var shader = options.shader || THREE.Refractor.RefractorShader;
//
var virtualCamera = new THREE.PerspectiveCamera();
virtualCamera.matrixAutoUpdate = false;
virtualCamera.userData.refractor = true;
//
var refractorPlane = new THREE.Plane();
var textureMatrix = new THREE.Matrix4();
// render target
var parameters = {
minFilter: THREE.LinearFilter,
magFilter: THREE.LinearFilter,
format: THREE.RGBFormat,
stencilBuffer: false
};
var renderTarget = new THREE.WebGLRenderTarget( textureWidth, textureHeight, parameters );
if ( ! THREE.Math.isPowerOfTwo( textureWidth ) || ! THREE.Math.isPowerOfTwo( textureHeight ) ) {
renderTarget.texture.generateMipmaps = false;
}
// material
this.material = new THREE.ShaderMaterial( {
uniforms: THREE.UniformsUtils.clone( shader.uniforms ),
vertexShader: shader.vertexShader,
fragmentShader: shader.fragmentShader,
transparent: true // ensures, refractors are drawn from farthest to closest
} );
this.material.uniforms[ "color" ].value = color;
this.material.uniforms[ "tDiffuse" ].value = renderTarget.texture;
this.material.uniforms[ "textureMatrix" ].value = textureMatrix;
// functions
var visible = ( function () {
var refractorWorldPosition = new THREE.Vector3();
var cameraWorldPosition = new THREE.Vector3();
var rotationMatrix = new THREE.Matrix4();
var view = new THREE.Vector3();
var normal = new THREE.Vector3();
return function visible( camera ) {
refractorWorldPosition.setFromMatrixPosition( scope.matrixWorld );
cameraWorldPosition.setFromMatrixPosition( camera.matrixWorld );
view.subVectors( refractorWorldPosition, cameraWorldPosition );
rotationMatrix.extractRotation( scope.matrixWorld );
normal.set( 0, 0, 1 );
normal.applyMatrix4( rotationMatrix );
return view.dot( normal ) < 0;
};
} )();
var updateRefractorPlane = ( function () {
var normal = new THREE.Vector3();
var position = new THREE.Vector3();
var quaternion = new THREE.Quaternion();
var scale = new THREE.Vector3();
return function updateRefractorPlane() {
scope.matrixWorld.decompose( position, quaternion, scale );
normal.set( 0, 0, 1 ).applyQuaternion( quaternion ).normalize();
// flip the normal because we want to cull everything above the plane
normal.negate();
refractorPlane.setFromNormalAndCoplanarPoint( normal, position );
};
} )();
var updateVirtualCamera = ( function () {
var clipPlane = new THREE.Plane();
var clipVector = new THREE.Vector4();
var q = new THREE.Vector4();
return function updateVirtualCamera( camera ) {
virtualCamera.matrixWorld.copy( camera.matrixWorld );
virtualCamera.matrixWorldInverse.getInverse( virtualCamera.matrixWorld );
virtualCamera.projectionMatrix.copy( camera.projectionMatrix );
virtualCamera.far = camera.far; // used in WebGLBackground
// The following code creates an oblique view frustum for clipping.
// see: Lengyel, Eric. “Oblique View Frustum Depth Projection and Clipping”.
// Journal of Game Development, Vol. 1, No. 2 (2005), Charles River Media, pp. 5–16
clipPlane.copy( refractorPlane );
clipPlane.applyMatrix4( virtualCamera.matrixWorldInverse );
clipVector.set( clipPlane.normal.x, clipPlane.normal.y, clipPlane.normal.z, clipPlane.constant );
// calculate the clip-space corner point opposite the clipping plane and
// transform it into camera space by multiplying it by the inverse of the projection matrix
var projectionMatrix = virtualCamera.projectionMatrix;
q.x = ( Math.sign( clipVector.x ) + projectionMatrix.elements[ 8 ] ) / projectionMatrix.elements[ 0 ];
q.y = ( Math.sign( clipVector.y ) + projectionMatrix.elements[ 9 ] ) / projectionMatrix.elements[ 5 ];
q.z = - 1.0;
q.w = ( 1.0 + projectionMatrix.elements[ 10 ] ) / projectionMatrix.elements[ 14 ];
// calculate the scaled plane vector
clipVector.multiplyScalar( 2.0 / clipVector.dot( q ) );
// replacing the third row of the projection matrix
projectionMatrix.elements[ 2 ] = clipVector.x;
projectionMatrix.elements[ 6 ] = clipVector.y;
projectionMatrix.elements[ 10 ] = clipVector.z + 1.0 - clipBias;
projectionMatrix.elements[ 14 ] = clipVector.w;
};
} )();
// This will update the texture matrix that is used for projective texture mapping in the shader.
// see: http://developer.download.nvidia.com/assets/gamedev/docs/projective_texture_mapping.pdf
function updateTextureMatrix( camera ) {
// this matrix does range mapping to [ 0, 1 ]
textureMatrix.set(
0.5, 0.0, 0.0, 0.5,
0.0, 0.5, 0.0, 0.5,
0.0, 0.0, 0.5, 0.5,
0.0, 0.0, 0.0, 1.0
);
// we use "Object Linear Texgen", so we need to multiply the texture matrix T
// (matrix above) with the projection and view matrix of the virtual camera
// and the model matrix of the refractor
textureMatrix.multiply( camera.projectionMatrix );
textureMatrix.multiply( camera.matrixWorldInverse );
textureMatrix.multiply( scope.matrixWorld );
}
//
var render = ( function () {
var viewport = new THREE.Vector4();
var size = new THREE.Vector2();
return function render( renderer, scene, camera ) {
scope.visible = false;
var currentRenderTarget = renderer.getRenderTarget();
var currentVrEnabled = renderer.vr.enabled;
var currentShadowAutoUpdate = renderer.shadowMap.autoUpdate;
renderer.vr.enabled = false; // avoid camera modification
renderer.shadowMap.autoUpdate = false; // avoid re-computing shadows
renderer.setRenderTarget( renderTarget );
renderer.clear();
renderer.render( scene, virtualCamera );
renderer.vr.enabled = currentVrEnabled;
renderer.shadowMap.autoUpdate = currentShadowAutoUpdate;
renderer.setRenderTarget( currentRenderTarget );
// restore viewport
var bounds = camera.bounds;
if ( bounds !== undefined ) {
renderer.getSize( size );
var pixelRatio = renderer.getPixelRatio();
viewport.x = bounds.x * size.width * pixelRatio;
viewport.y = bounds.y * size.height * pixelRatio;
viewport.z = bounds.z * size.width * pixelRatio;
viewport.w = bounds.w * size.height * pixelRatio;
renderer.state.viewport( viewport );
}
scope.visible = true;
};
} )();
//
this.onBeforeRender = function ( renderer, scene, camera ) {
// ensure refractors are rendered only once per frame
if ( camera.userData.refractor === true ) return;
// avoid rendering when the refractor is viewed from behind
if ( ! visible( camera ) === true ) return;
// update
updateRefractorPlane();
updateTextureMatrix( camera );
updateVirtualCamera( camera );
render( renderer, scene, camera );
};
this.getRenderTarget = function () {
return renderTarget;
};
};
THREE.Refractor.prototype = Object.create( THREE.Mesh.prototype );
THREE.Refractor.prototype.constructor = THREE.Refractor;
THREE.Refractor.RefractorShader = {
uniforms: {
'color': {
type: 'c',
value: null
},
'tDiffuse': {
type: 't',
value: null
},
'textureMatrix': {
type: 'm4',
value: null
}
},
vertexShader: [
'uniform mat4 textureMatrix;',
'varying vec4 vUv;',
'void main() {',
' vUv = textureMatrix * vec4( position, 1.0 );',
' gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );',
'}'
].join( '\n' ),
fragmentShader: [
'uniform vec3 color;',
'uniform sampler2D tDiffuse;',
'varying vec4 vUv;',
'float blendOverlay( float base, float blend ) {',
' return( base < 0.5 ? ( 2.0 * base * blend ) : ( 1.0 - 2.0 * ( 1.0 - base ) * ( 1.0 - blend ) ) );',
'}',
'vec3 blendOverlay( vec3 base, vec3 blend ) {',
' return vec3( blendOverlay( base.r, blend.r ), blendOverlay( base.g, blend.g ), blendOverlay( base.b, blend.b ) );',
'}',
'void main() {',
' vec4 base = texture2DProj( tDiffuse, vUv );',
' gl_FragColor = vec4( blendOverlay( base.rgb, color ), 1.0 );',
'}'
].join( '\n' )
};
|