File size: 13,600 Bytes
6cd9596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
// Ported from Stefan Gustavson's java implementation
// http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
// Read Stefan's excellent paper for details on how this code works.
//
// Sean McCullough [email protected]
//
// Added 4D noise
// Joshua Koo [email protected] 

/**
 * You can pass in a random number generator object if you like.
 * It is assumed to have a random() method.
 */
var SimplexNoise = function(r) {
	if (r == undefined) r = Math;
	this.grad3 = [[ 1,1,0 ],[ -1,1,0 ],[ 1,-1,0 ],[ -1,-1,0 ], 
                                 [ 1,0,1 ],[ -1,0,1 ],[ 1,0,-1 ],[ -1,0,-1 ], 
                                 [ 0,1,1 ],[ 0,-1,1 ],[ 0,1,-1 ],[ 0,-1,-1 ]]; 

	this.grad4 = [[ 0,1,1,1 ], [ 0,1,1,-1 ], [ 0,1,-1,1 ], [ 0,1,-1,-1 ],
	     [ 0,-1,1,1 ], [ 0,-1,1,-1 ], [ 0,-1,-1,1 ], [ 0,-1,-1,-1 ],
	     [ 1,0,1,1 ], [ 1,0,1,-1 ], [ 1,0,-1,1 ], [ 1,0,-1,-1 ],
	     [ -1,0,1,1 ], [ -1,0,1,-1 ], [ -1,0,-1,1 ], [ -1,0,-1,-1 ],
	     [ 1,1,0,1 ], [ 1,1,0,-1 ], [ 1,-1,0,1 ], [ 1,-1,0,-1 ],
	     [ -1,1,0,1 ], [ -1,1,0,-1 ], [ -1,-1,0,1 ], [ -1,-1,0,-1 ],
	     [ 1,1,1,0 ], [ 1,1,-1,0 ], [ 1,-1,1,0 ], [ 1,-1,-1,0 ],
	     [ -1,1,1,0 ], [ -1,1,-1,0 ], [ -1,-1,1,0 ], [ -1,-1,-1,0 ]];

	this.p = [];
	for (var i = 0; i < 256; i ++) {
		this.p[i] = Math.floor(r.random() * 256);
	}
  // To remove the need for index wrapping, double the permutation table length 
	this.perm = []; 
	for (var i = 0; i < 512; i ++) {
		this.perm[i] = this.p[i & 255];
	} 

  // A lookup table to traverse the simplex around a given point in 4D. 
  // Details can be found where this table is used, in the 4D noise method. 
	this.simplex = [ 
    [ 0,1,2,3 ],[ 0,1,3,2 ],[ 0,0,0,0 ],[ 0,2,3,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,2,3,0 ], 
    [ 0,2,1,3 ],[ 0,0,0,0 ],[ 0,3,1,2 ],[ 0,3,2,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,3,2,0 ], 
    [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ], 
    [ 1,2,0,3 ],[ 0,0,0,0 ],[ 1,3,0,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,3,0,1 ],[ 2,3,1,0 ], 
    [ 1,0,2,3 ],[ 1,0,3,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,0,3,1 ],[ 0,0,0,0 ],[ 2,1,3,0 ], 
    [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ], 
    [ 2,0,1,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,0,1,2 ],[ 3,0,2,1 ],[ 0,0,0,0 ],[ 3,1,2,0 ], 
    [ 2,1,0,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,1,0,2 ],[ 0,0,0,0 ],[ 3,2,0,1 ],[ 3,2,1,0 ]]; 
};

SimplexNoise.prototype.dot = function(g, x, y) { 
	return g[0] * x + g[1] * y;
};

SimplexNoise.prototype.dot3 = function(g, x, y, z) {
	return g[0] * x + g[1] * y + g[2] * z; 
};

SimplexNoise.prototype.dot4 = function(g, x, y, z, w) {
	return g[0] * x + g[1] * y + g[2] * z + g[3] * w;
};

SimplexNoise.prototype.noise = function(xin, yin) { 
	var n0, n1, n2; // Noise contributions from the three corners 
  // Skew the input space to determine which simplex cell we're in 
	var F2 = 0.5 * (Math.sqrt(3.0) - 1.0); 
	var s = (xin + yin) * F2; // Hairy factor for 2D 
	var i = Math.floor(xin + s); 
	var j = Math.floor(yin + s); 
	var G2 = (3.0 - Math.sqrt(3.0)) / 6.0; 
	var t = (i + j) * G2; 
	var X0 = i - t; // Unskew the cell origin back to (x,y) space 
	var Y0 = j - t; 
	var x0 = xin - X0; // The x,y distances from the cell origin 
	var y0 = yin - Y0; 
  // For the 2D case, the simplex shape is an equilateral triangle. 
  // Determine which simplex we are in. 
	var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords 
	if (x0 > y0) {i1 = 1; j1 = 0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) 
	else {i1 = 0; j1 = 1;}      // upper triangle, YX order: (0,0)->(0,1)->(1,1) 
  // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and 
  // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where 
  // c = (3-sqrt(3))/6 
	var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords 
	var y1 = y0 - j1 + G2; 
	var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords 
	var y2 = y0 - 1.0 + 2.0 * G2; 
  // Work out the hashed gradient indices of the three simplex corners 
	var ii = i & 255; 
	var jj = j & 255; 
	var gi0 = this.perm[ii + this.perm[jj]] % 12; 
	var gi1 = this.perm[ii + i1 + this.perm[jj + j1]] % 12; 
	var gi2 = this.perm[ii + 1 + this.perm[jj + 1]] % 12; 
  // Calculate the contribution from the three corners 
	var t0 = 0.5 - x0 * x0 - y0 * y0; 
	if (t0 < 0) n0 = 0.0; 
	else { 
		t0 *= t0; 
		n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0);  // (x,y) of grad3 used for 2D gradient 
	} 
	var t1 = 0.5 - x1 * x1 - y1 * y1; 
	if (t1 < 0) n1 = 0.0; 
	else { 
		t1 *= t1; 
		n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1); 
	}
	var t2 = 0.5 - x2 * x2 - y2 * y2; 
	if (t2 < 0) n2 = 0.0; 
	else { 
		t2 *= t2; 
		n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2); 
	} 
  // Add contributions from each corner to get the final noise value. 
  // The result is scaled to return values in the interval [-1,1]. 
	return 70.0 * (n0 + n1 + n2); 
};

// 3D simplex noise 
SimplexNoise.prototype.noise3d = function(xin, yin, zin) { 
	var n0, n1, n2, n3; // Noise contributions from the four corners 
  // Skew the input space to determine which simplex cell we're in 
	var F3 = 1.0 / 3.0; 
	var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D 
	var i = Math.floor(xin + s); 
	var j = Math.floor(yin + s); 
	var k = Math.floor(zin + s); 
	var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too 
	var t = (i + j + k) * G3; 
	var X0 = i - t; // Unskew the cell origin back to (x,y,z) space 
	var Y0 = j - t; 
	var Z0 = k - t; 
	var x0 = xin - X0; // The x,y,z distances from the cell origin 
	var y0 = yin - Y0; 
	var z0 = zin - Z0; 
  // For the 3D case, the simplex shape is a slightly irregular tetrahedron. 
  // Determine which simplex we are in. 
	var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords 
	var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords 
	if (x0 >= y0) { 
		if (y0 >= z0) 
      { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order 
      else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order 
		else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order 
	} 
	else { // x0<y0 
		if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order 
    else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order 
		else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order 
	} 
  // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), 
  // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and 
  // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where 
  // c = 1/6.
	var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords 
	var y1 = y0 - j1 + G3; 
	var z1 = z0 - k1 + G3; 
	var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords 
	var y2 = y0 - j2 + 2.0 * G3; 
	var z2 = z0 - k2 + 2.0 * G3; 
	var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords 
	var y3 = y0 - 1.0 + 3.0 * G3; 
	var z3 = z0 - 1.0 + 3.0 * G3; 
  // Work out the hashed gradient indices of the four simplex corners 
	var ii = i & 255; 
	var jj = j & 255; 
	var kk = k & 255; 
	var gi0 = this.perm[ii + this.perm[jj + this.perm[kk]]] % 12; 
	var gi1 = this.perm[ii + i1 + this.perm[jj + j1 + this.perm[kk + k1]]] % 12; 
	var gi2 = this.perm[ii + i2 + this.perm[jj + j2 + this.perm[kk + k2]]] % 12; 
	var gi3 = this.perm[ii + 1 + this.perm[jj + 1 + this.perm[kk + 1]]] % 12; 
  // Calculate the contribution from the four corners 
	var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; 
	if (t0 < 0) n0 = 0.0; 
	else { 
		t0 *= t0; 
		n0 = t0 * t0 * this.dot3(this.grad3[gi0], x0, y0, z0); 
	}
	var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; 
	if (t1 < 0) n1 = 0.0; 
	else { 
		t1 *= t1; 
		n1 = t1 * t1 * this.dot3(this.grad3[gi1], x1, y1, z1); 
	} 
	var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; 
	if (t2 < 0) n2 = 0.0; 
	else { 
		t2 *= t2; 
		n2 = t2 * t2 * this.dot3(this.grad3[gi2], x2, y2, z2); 
	} 
	var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; 
	if (t3 < 0) n3 = 0.0; 
	else { 
		t3 *= t3; 
		n3 = t3 * t3 * this.dot3(this.grad3[gi3], x3, y3, z3); 
	} 
  // Add contributions from each corner to get the final noise value. 
  // The result is scaled to stay just inside [-1,1] 
	return 32.0 * (n0 + n1 + n2 + n3); 
};

// 4D simplex noise
SimplexNoise.prototype.noise4d = function( x, y, z, w ) {
	// For faster and easier lookups
	var grad4 = this.grad4;
	var simplex = this.simplex;
	var perm = this.perm;
	
   // The skewing and unskewing factors are hairy again for the 4D case
	var F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
	var G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
	var n0, n1, n2, n3, n4; // Noise contributions from the five corners
   // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
	var s = (x + y + z + w) * F4; // Factor for 4D skewing
	var i = Math.floor(x + s);
	var j = Math.floor(y + s);
	var k = Math.floor(z + s);
	var l = Math.floor(w + s);
	var t = (i + j + k + l) * G4; // Factor for 4D unskewing
	var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
	var Y0 = j - t;
	var Z0 = k - t;
	var W0 = l - t;
	var x0 = x - X0;  // The x,y,z,w distances from the cell origin
	var y0 = y - Y0;
	var z0 = z - Z0;
	var w0 = w - W0;

   // For the 4D case, the simplex is a 4D shape I won't even try to describe.
   // To find out which of the 24 possible simplices we're in, we need to
   // determine the magnitude ordering of x0, y0, z0 and w0.
   // The method below is a good way of finding the ordering of x,y,z,w and
   // then find the correct traversal order for the simplex we’re in.
   // First, six pair-wise comparisons are performed between each possible pair
   // of the four coordinates, and the results are used to add up binary bits
   // for an integer index.
	var c1 = (x0 > y0) ? 32 : 0;
	var c2 = (x0 > z0) ? 16 : 0;
	var c3 = (y0 > z0) ? 8 : 0;
	var c4 = (x0 > w0) ? 4 : 0;
	var c5 = (y0 > w0) ? 2 : 0;
	var c6 = (z0 > w0) ? 1 : 0;
	var c = c1 + c2 + c3 + c4 + c5 + c6;
	var i1, j1, k1, l1; // The integer offsets for the second simplex corner
	var i2, j2, k2, l2; // The integer offsets for the third simplex corner
	var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
   // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
   // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
   // impossible. Only the 24 indices which have non-zero entries make any sense.
   // We use a thresholding to set the coordinates in turn from the largest magnitude.
   // The number 3 in the "simplex" array is at the position of the largest coordinate.
	i1 = simplex[c][0] >= 3 ? 1 : 0;
	j1 = simplex[c][1] >= 3 ? 1 : 0;
	k1 = simplex[c][2] >= 3 ? 1 : 0;
	l1 = simplex[c][3] >= 3 ? 1 : 0;
   // The number 2 in the "simplex" array is at the second largest coordinate.
	i2 = simplex[c][0] >= 2 ? 1 : 0;
	j2 = simplex[c][1] >= 2 ? 1 : 0;    k2 = simplex[c][2] >= 2 ? 1 : 0;
	l2 = simplex[c][3] >= 2 ? 1 : 0;
   // The number 1 in the "simplex" array is at the second smallest coordinate.
	i3 = simplex[c][0] >= 1 ? 1 : 0;
	j3 = simplex[c][1] >= 1 ? 1 : 0;
	k3 = simplex[c][2] >= 1 ? 1 : 0;
	l3 = simplex[c][3] >= 1 ? 1 : 0;
   // The fifth corner has all coordinate offsets = 1, so no need to look that up.
	var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
	var y1 = y0 - j1 + G4;
	var z1 = z0 - k1 + G4;
	var w1 = w0 - l1 + G4;
	var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
	var y2 = y0 - j2 + 2.0 * G4;
	var z2 = z0 - k2 + 2.0 * G4;
	var w2 = w0 - l2 + 2.0 * G4;
	var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
	var y3 = y0 - j3 + 3.0 * G4;
	var z3 = z0 - k3 + 3.0 * G4;
	var w3 = w0 - l3 + 3.0 * G4;
	var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
	var y4 = y0 - 1.0 + 4.0 * G4;
	var z4 = z0 - 1.0 + 4.0 * G4;
	var w4 = w0 - 1.0 + 4.0 * G4;
   // Work out the hashed gradient indices of the five simplex corners
	var ii = i & 255;
	var jj = j & 255;
	var kk = k & 255;
	var ll = l & 255;
	var gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
	var gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
	var gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
	var gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
	var gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
   // Calculate the contribution from the five corners
	var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
	if (t0 < 0) n0 = 0.0;
	else {
		t0 *= t0;
		n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0);
	}
	var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
	if (t1 < 0) n1 = 0.0;
	else {
		t1 *= t1;
		n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1);
	}
	var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
	if (t2 < 0) n2 = 0.0;
	else {
		t2 *= t2;
		n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2);
	}   var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
	if (t3 < 0) n3 = 0.0;
	else {
		t3 *= t3;
		n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3);
	}
	var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
	if (t4 < 0) n4 = 0.0;
	else {
		t4 *= t4;
		n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4);
	}
   // Sum up and scale the result to cover the range [-1,1]
	return 27.0 * (n0 + n1 + n2 + n3 + n4);
};