Spaces:
Running
Running
File size: 10,498 Bytes
6cd9596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
/**
* @author yomboprime https://github.com/yomboprime
*
* GPUComputationRenderer, based on SimulationRenderer by zz85
*
* The GPUComputationRenderer uses the concept of variables. These variables are RGBA float textures that hold 4 floats
* for each compute element (texel)
*
* Each variable has a fragment shader that defines the computation made to obtain the variable in question.
* You can use as many variables you need, and make dependencies so you can use textures of other variables in the shader
* (the sampler uniforms are added automatically) Most of the variables will need themselves as dependency.
*
* The renderer has actually two render targets per variable, to make ping-pong. Textures from the current frame are used
* as inputs to render the textures of the next frame.
*
* The render targets of the variables can be used as input textures for your visualization shaders.
*
* Variable names should be valid identifiers and should not collide with THREE GLSL used identifiers.
* a common approach could be to use 'texture' prefixing the variable name; i.e texturePosition, textureVelocity...
*
* The size of the computation (sizeX * sizeY) is defined as 'resolution' automatically in the shader. For example:
* #DEFINE resolution vec2( 1024.0, 1024.0 )
*
* -------------
*
* Basic use:
*
* // Initialization...
*
* // Create computation renderer
* var gpuCompute = new GPUComputationRenderer( 1024, 1024, renderer );
*
* // Create initial state float textures
* var pos0 = gpuCompute.createTexture();
* var vel0 = gpuCompute.createTexture();
* // and fill in here the texture data...
*
* // Add texture variables
* var velVar = gpuCompute.addVariable( "textureVelocity", fragmentShaderVel, pos0 );
* var posVar = gpuCompute.addVariable( "texturePosition", fragmentShaderPos, vel0 );
*
* // Add variable dependencies
* gpuCompute.setVariableDependencies( velVar, [ velVar, posVar ] );
* gpuCompute.setVariableDependencies( posVar, [ velVar, posVar ] );
*
* // Add custom uniforms
* velVar.material.uniforms.time = { value: 0.0 };
*
* // Check for completeness
* var error = gpuCompute.init();
* if ( error !== null ) {
* console.error( error );
* }
*
*
* // In each frame...
*
* // Compute!
* gpuCompute.compute();
*
* // Update texture uniforms in your visualization materials with the gpu renderer output
* myMaterial.uniforms.myTexture.value = gpuCompute.getCurrentRenderTarget( posVar ).texture;
*
* // Do your rendering
* renderer.render( myScene, myCamera );
*
* -------------
*
* Also, you can use utility functions to create ShaderMaterial and perform computations (rendering between textures)
* Note that the shaders can have multiple input textures.
*
* var myFilter1 = gpuCompute.createShaderMaterial( myFilterFragmentShader1, { theTexture: { value: null } } );
* var myFilter2 = gpuCompute.createShaderMaterial( myFilterFragmentShader2, { theTexture: { value: null } } );
*
* var inputTexture = gpuCompute.createTexture();
*
* // Fill in here inputTexture...
*
* myFilter1.uniforms.theTexture.value = inputTexture;
*
* var myRenderTarget = gpuCompute.createRenderTarget();
* myFilter2.uniforms.theTexture.value = myRenderTarget.texture;
*
* var outputRenderTarget = gpuCompute.createRenderTarget();
*
* // Now use the output texture where you want:
* myMaterial.uniforms.map.value = outputRenderTarget.texture;
*
* // And compute each frame, before rendering to screen:
* gpuCompute.doRenderTarget( myFilter1, myRenderTarget );
* gpuCompute.doRenderTarget( myFilter2, outputRenderTarget );
*
*
*
* @param {int} sizeX Computation problem size is always 2d: sizeX * sizeY elements.
* @param {int} sizeY Computation problem size is always 2d: sizeX * sizeY elements.
* @param {WebGLRenderer} renderer The renderer
*/
function GPUComputationRenderer( sizeX, sizeY, renderer ) {
this.variables = [];
this.currentTextureIndex = 0;
var scene = new THREE.Scene();
var camera = new THREE.Camera();
camera.position.z = 1;
var passThruUniforms = {
texture: { value: null }
};
var passThruShader = createShaderMaterial( getPassThroughFragmentShader(), passThruUniforms );
var mesh = new THREE.Mesh( new THREE.PlaneBufferGeometry( 2, 2 ), passThruShader );
scene.add( mesh );
this.addVariable = function( variableName, computeFragmentShader, initialValueTexture ) {
var material = this.createShaderMaterial( computeFragmentShader );
var variable = {
name: variableName,
initialValueTexture: initialValueTexture,
material: material,
dependencies: null,
renderTargets: [],
wrapS: null,
wrapT: null,
minFilter: THREE.NearestFilter,
magFilter: THREE.NearestFilter
};
this.variables.push( variable );
return variable;
};
this.setVariableDependencies = function( variable, dependencies ) {
variable.dependencies = dependencies;
};
this.init = function() {
if ( ! renderer.extensions.get( "OES_texture_float" ) ) {
return "No OES_texture_float support for float textures.";
}
if ( renderer.capabilities.maxVertexTextures === 0 ) {
return "No support for vertex shader textures.";
}
for ( var i = 0; i < this.variables.length; i++ ) {
var variable = this.variables[ i ];
// Creates rendertargets and initialize them with input texture
variable.renderTargets[ 0 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
variable.renderTargets[ 1 ] = this.createRenderTarget( sizeX, sizeY, variable.wrapS, variable.wrapT, variable.minFilter, variable.magFilter );
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 0 ] );
this.renderTexture( variable.initialValueTexture, variable.renderTargets[ 1 ] );
// Adds dependencies uniforms to the ShaderMaterial
var material = variable.material;
var uniforms = material.uniforms;
if ( variable.dependencies !== null ) {
for ( var d = 0; d < variable.dependencies.length; d++ ) {
var depVar = variable.dependencies[ d ];
if ( depVar.name !== variable.name ) {
// Checks if variable exists
var found = false;
for ( var j = 0; j < this.variables.length; j++ ) {
if ( depVar.name === this.variables[ j ].name ) {
found = true;
break;
}
}
if ( ! found ) {
return "Variable dependency not found. Variable=" + variable.name + ", dependency=" + depVar.name;
}
}
uniforms[ depVar.name ] = { value: null };
material.fragmentShader = "\nuniform sampler2D " + depVar.name + ";\n" + material.fragmentShader;
}
}
}
this.currentTextureIndex = 0;
return null;
};
this.compute = function() {
var currentTextureIndex = this.currentTextureIndex;
var nextTextureIndex = this.currentTextureIndex === 0 ? 1 : 0;
for ( var i = 0, il = this.variables.length; i < il; i++ ) {
var variable = this.variables[ i ];
// Sets texture dependencies uniforms
if ( variable.dependencies !== null ) {
var uniforms = variable.material.uniforms;
for ( var d = 0, dl = variable.dependencies.length; d < dl; d++ ) {
var depVar = variable.dependencies[ d ];
uniforms[ depVar.name ].value = depVar.renderTargets[ currentTextureIndex ].texture;
}
}
// Performs the computation for this variable
this.doRenderTarget( variable.material, variable.renderTargets[ nextTextureIndex ] );
}
this.currentTextureIndex = nextTextureIndex;
};
this.getCurrentRenderTarget = function( variable ) {
return variable.renderTargets[ this.currentTextureIndex ];
};
this.getAlternateRenderTarget = function( variable ) {
return variable.renderTargets[ this.currentTextureIndex === 0 ? 1 : 0 ];
};
function addResolutionDefine( materialShader ) {
materialShader.defines.resolution = 'vec2( ' + sizeX.toFixed( 1 ) + ', ' + sizeY.toFixed( 1 ) + " )";
}
this.addResolutionDefine = addResolutionDefine;
// The following functions can be used to compute things manually
function createShaderMaterial( computeFragmentShader, uniforms ) {
uniforms = uniforms || {};
var material = new THREE.ShaderMaterial( {
uniforms: uniforms,
vertexShader: getPassThroughVertexShader(),
fragmentShader: computeFragmentShader
} );
addResolutionDefine( material );
return material;
}
this.createShaderMaterial = createShaderMaterial;
this.createRenderTarget = function( sizeXTexture, sizeYTexture, wrapS, wrapT, minFilter, magFilter ) {
sizeXTexture = sizeXTexture || sizeX;
sizeYTexture = sizeYTexture || sizeY;
wrapS = wrapS || THREE.ClampToEdgeWrapping;
wrapT = wrapT || THREE.ClampToEdgeWrapping;
minFilter = minFilter || THREE.NearestFilter;
magFilter = magFilter || THREE.NearestFilter;
var renderTarget = new THREE.WebGLRenderTarget( sizeXTexture, sizeYTexture, {
wrapS: wrapS,
wrapT: wrapT,
minFilter: minFilter,
magFilter: magFilter,
format: THREE.RGBAFormat,
type: ( /(iPad|iPhone|iPod)/g.test( navigator.userAgent ) ) ? THREE.HalfFloatType : THREE.FloatType,
stencilBuffer: false,
depthBuffer: false
} );
return renderTarget;
};
this.createTexture = function() {
var a = new Float32Array( sizeX * sizeY * 4 );
var texture = new THREE.DataTexture( a, sizeX, sizeY, THREE.RGBAFormat, THREE.FloatType );
texture.needsUpdate = true;
return texture;
};
this.renderTexture = function( input, output ) {
// Takes a texture, and render out in rendertarget
// input = Texture
// output = RenderTarget
passThruUniforms.texture.value = input;
this.doRenderTarget( passThruShader, output);
passThruUniforms.texture.value = null;
};
this.doRenderTarget = function( material, output ) {
var currentRenderTarget = renderer.getRenderTarget();
mesh.material = material;
renderer.setRenderTarget( output );
renderer.render( scene, camera );
mesh.material = passThruShader;
renderer.setRenderTarget( currentRenderTarget );
};
// Shaders
function getPassThroughVertexShader() {
return "void main() {\n" +
"\n" +
" gl_Position = vec4( position, 1.0 );\n" +
"\n" +
"}\n";
}
function getPassThroughFragmentShader() {
return "uniform sampler2D texture;\n" +
"\n" +
"void main() {\n" +
"\n" +
" vec2 uv = gl_FragCoord.xy / resolution.xy;\n" +
"\n" +
" gl_FragColor = texture2D( texture, uv );\n" +
"\n" +
"}\n";
}
}
|