bajrangCoder commited on
Commit
1efc6bb
·
1 Parent(s): a4b5c47

Updated model

Browse files
Files changed (2) hide show
  1. app.py +40 -59
  2. requirements.txt +6 -1
app.py CHANGED
@@ -1,63 +1,44 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("bajrangCoder/BhagavadGita")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are Lord Krishna and You have to answer in context to bhagavad gita", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
 
 
 
61
 
62
- if __name__ == "__main__":
63
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
+ import torch
4
+
5
+ model = AutoModelForCausalLM.from_pretrained(
6
+ "bajrangCoder/BhagavadGita",
7
+ torch_dtype=torch.bfloat16,
8
+ trust_remote_code=True,
9
+ device_map="auto",
10
+ low_cpu_mem_usage=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  )
12
+ tokenizer = AutoTokenizer.from_pretrained("bajrangCoder/BhagavadGita")
13
+
14
+
15
+ def generate_text(input_text):
16
+ input_ids = tokenizer.encode(input_text, return_tensors="pt")
17
+ attention_mask = torch.ones(input_ids.shape)
18
+
19
+ output = model.generate(
20
+ input_ids,
21
+ attention_mask=attention_mask,
22
+ max_length=200,
23
+ do_sample=True,
24
+ top_k=10,
25
+ num_return_sequences=1,
26
+ eos_token_id=tokenizer.eos_token_id,
27
+ )
28
 
29
+ output_text = tokenizer.decode(output[0], skip_special_tokens=True)
30
+ print(output_text)
31
 
32
+ # Remove Prompt Echo from Generated Text
33
+ cleaned_output_text = output_text.replace(input_text, "")
34
+ return cleaned_output_text
35
+
36
+
37
+ text_generation_interface = gr.Interface(
38
+ fn=generate_text,
39
+ inputs=[
40
+ gr.inputs.Textbox(label="Input Text"),
41
+ ],
42
+ outputs=gr.inputs.Textbox(label="Generated Text"),
43
+ title="BhagavadGita Instruct",
44
+ ).launch()
requirements.txt CHANGED
@@ -1 +1,6 @@
1
- huggingface_hub==0.22.2
 
 
 
 
 
 
1
+ huggingface_hub==0.22.2
2
+ datasets
3
+ transformers
4
+ accelerate
5
+ einops
6
+ safetensors